Fasting-mimicking diet prevents high-fat diet effect on cardiometabolic risk and lifespan

. 2021 Oct ; 3 (10) : 1342-1356. [epub] 20211014

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34650272

Grantová podpora
P01 AG055369 NIA NIH HHS - United States

Odkazy

PubMed 34650272
DOI 10.1038/s42255-021-00469-6
PII: 10.1038/s42255-021-00469-6
Knihovny.cz E-zdroje

Diet-induced obesity is a major risk factor for metabolic syndrome, diabetes and cardiovascular disease. Here, we show that a 5-d fasting-mimicking diet (FMD), administered every 4 weeks for a period of 2 years, ameliorates the detrimental changes caused by consumption of a high-fat, high-calorie diet (HFCD) in female mice. We demonstrate that monthly FMD cycles inhibit HFCD-mediated obesity by reducing the accumulation of visceral and subcutaneous fat without causing loss of lean body mass. FMD cycles increase cardiac vascularity and function and resistance to cardiotoxins, prevent HFCD-dependent hyperglycaemia, hypercholesterolaemia and hyperleptinaemia and ameliorate impaired glucose and insulin tolerance. The effect of monthly FMD cycles on gene expression associated with mitochondrial metabolism and biogenesis in adipocytes and the sustained ketogenesis in HFCD-fed mice indicate a role for fat cell reprogramming in obesity prevention. These effects of an FMD on adiposity and cardiac ageing could explain the protection from HFCD-dependent early mortality.

Komentář v

PubMed

Zobrazit více v PubMed

National Center for Health Statistics: National Health and Nutrition Examination Survey 2020 (CDC, 2020).

Fryar, C. D., Carroll, M. D. & Ogden, C. L. Prevalence of overweight, obesity, and extreme obesity among adults aged 20 and over: United States, 1960–1962 through 2013–2014 (National Center for Health Statistics, CDC, 2016).

Schrauwen, P. & Westerterp, K. R. The role of high-fat diets and physical activity in the regulation of body weight. Br. J. Nutr. 84, 417–427 (2000). PubMed DOI

Després, J.-P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006). PubMed DOI

Astrup, A. The role of dietary fat in obesity. Semin. Vasc. Med. 5, 40–47 (2005). PubMed DOI

Buettner, R., Schölmerich, J. & Bollheimer, L. C. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity 15, 798–808 (2007). PubMed DOI

Hu, S. et al. Dietary fat, but not protein or carbohydrate, regulates energy intake and causes adiposity in mice. Cell Metab. 28, 415–431 (2018). PubMed DOI

Longo, V. D. & Mattson, M. P. Fasting: molecular mechanisms and clinical applications. Cell Metab. 19, 181–192 (2014). PubMed DOI PMC

Wei, M. et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci. Transl. Med. 9, eaai8700 (2017). PubMed DOI PMC

Brandhorst, S. et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 22, 86–99 (2015). PubMed DOI PMC

Choi, I. Y. et al. A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep. 15, 2136–2146 (2016). PubMed DOI PMC

Cheng, C.-W. et al. Fasting-mimicking diet promotes Ngn3-driven β-cell regeneration to reverse diabetes. Cell 168, 775–788 (2017). PubMed DOI PMC

Di Biase, S. et al. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell 30, 136–146 (2016). PubMed DOI PMC

Rangan, P. et al. Supplementary-fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology. Cell Rep. 26, 2704–2719 (2019). PubMed DOI PMC

Ingvorsen, C., Karp, N. A. & Lelliott, C. J. The role of sex and body weight on the metabolic effects of high-fat diet in C57BL/6N mice. Nutr. Diabetes 7, e261 (2017). PubMed DOI PMC

Guo, J., Jou, W., Gavrilova, O. & Hall, K. D. Persistent diet-induced obesity in male C57BL/6 mice resulting from temporary obesigenic diets. PLoS ONE 4, e5370 (2009). PubMed DOI PMC

Klok, M. D., Jakobsdottir, S. & Drent, M. L. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes. Rev. 8, 21–34 (2007). PubMed DOI

Ioannou, G. N., Weiss, N. S., Boyko, E. J., Mozaffarian, D. & Lee, S. P. Elevated serum alanine aminotransferase activity and calculated risk of coronary heart disease in the United States. Hepatology 43, 1145–1151 (2006). PubMed DOI

Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005). PubMed DOI

Fontana, L. et al. Aging promotes the development of diet-induced murine steatohepatitis but not steatosis. Hepatology 57, 995–1004 (2013). PubMed DOI

Goedecke, J. H. et al. Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes. Am. J. Physiol. Endocrinol. Metab. 279, 1325–1334 (2000). DOI

Shiojima, I. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115, 2108–2118 (2005). PubMed DOI PMC

Xu, X. et al. Age-related impairment of vascular structure and functions. Aging Dis. 8, 590–610 (2017). PubMed DOI PMC

Lakatta, E. G. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part III: cellular and molecular clues to heart and arterial aging. Circulation 107, 490–497 (2003). PubMed DOI

Horn, M. A. & Trafford, A. W. Aging and the cardiac collagen matrix: novel mediators of fibrotic remodelling. J. Mol. Cell. Cardiol. 93, 175–185 (2016). PubMed DOI PMC

Nadruz, W. Myocardial remodeling in hypertension. J. Hum. Hypertens. 29, 1–6 (2015). PubMed DOI

Houser, S. R. et al. Animal models of heart failure. Circ. Res. 111, 131–150 (2012). PubMed DOI

Marwick, T. H. Stress echocardiography. In Echocardiography (eds Nihoyannopoulos, P. & Kisslo, J.) 491–519 (Springer, 2018).

Vallet, B., Dupuis, B. & Chopin, C. [Dobutamine: mechanisms of action and use in acute cardiovascular pathology]. Ann. Cardiol. Angeiol. 40, 397–402 (1991).

Pellikka, P. A. et al. Guidelines for performance, interpretation, and application of stress echocardiography in ischemic heart disease: from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 33, 1–41 (2020). PubMed DOI

Zhang, Y. et al. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice. Arch. Biochem. Biophys. 576, 39–48 (2015). PubMed DOI PMC

Leontieva, O. V., Paszkiewicz, G. M. & Blagosklonny, M. V. Weekly administration of rapamycin improves survival and biomarkers in obese male mice on high-fat diet. Aging Cell 13, 616–622 (2014). PubMed DOI PMC

Aires, V. et al. Healthy adiposity and extended lifespan in obese mice fed a diet supplemented with a polyphenol-rich plant extract. Sci. Rep. 9, 9116–9134 (2019). DOI

Zhu, B. et al. Alogliptin improves survival and health of mice on a high-fat diet. Aging Cell 18, e12883 (2019). PubMed DOI PMC

Brandhorst, S. & Longo, V. D. Dietary restrictions and nutrition in the prevention and treatment of cardiovascular disease. Circ. Res. 124, 952–965 (2019). PubMed DOI

Fanti, M., Mishra, A., Longo, V. D. & Brandhorst, S. Time-restricted eating, intermittent fasting, and fasting-mimicking diets in weight loss. Curr. Obes. Rep. 10, 70–80 (2021). PubMed DOI

Newman, J. C. et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 26, 547–557 (2017). PubMed DOI PMC

Rusli, F. et al. Intermittent calorie restriction largely counteracts the adverse health effects of a moderate-fat diet in aging C57BL/6J mice. Mol. Nutr. Food Res. 61, 1600677 (2017). DOI PMC

Stamler, J. et al. Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary, cardiovascular, and all-cause mortality and to longevity. JAMA 284, 311–318 (2000). PubMed DOI

Sedej, S. Ketone bodies to the rescue for an aging heart? Cardiovasc. Res. 114, e1–e2 (2018). PubMed DOI

Veech, R. L. et al. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life 69, 305–314 (2017). PubMed DOI

Greenway, F. L. Physiological adaptations to weight loss and factors favouring weight regain. Int. J. Obes. 39, 1188–1196 (2015). DOI

Graham, B., Chang, S., Lin, D., Yakubu, F. & Hill, J. O. Effect of weight cycling on susceptibility to dietary obesity. Am. J. Physiol. 259, R1096–R1102 (1990). PubMed

Simonds, S. E., Pryor, J. T. & Cowley, M. A. Repeated weight cycling in obese mice causes increased appetite and glucose intolerance. Physiol. Behav. 194, 184–190 (2018). PubMed DOI

O’Connor, K. L. et al. Altered appetite-mediating hormone concentrations precede compensatory overeating after severe, short-term energy deprivation in healthy adults. J. Nutr. 146, 209–217 (2016). PubMed DOI

Coutinho, S. R. et al. Compensatory mechanisms activated with intermittent energy restriction: a randomized control trial. Clin. Nutr. 37, 815–823 (2018). PubMed DOI

Kondo, M. et al. Caloric restriction stimulates revascularization in response to ischemia via adiponectin-mediated activation of endothelial nitric-oxide synthase. J. Biol. Chem. 284, 1718–1724 (2009). PubMed DOI PMC

Claudio, deL. et al. Long-term caloric restriction improves cardiac function, remodeling, adrenergic responsiveness, and sympathetic innervation in a model of postischemic heart failure. Circ. Heart Fail. 11, e004153 (2018). DOI

Ahmet, I., Tae, H.-J., de Cabo, R., Lakatta, E. G. & Talan, M. I. Effects of calorie restriction on cardioprotection and cardiovascular health. J. Mol. Cell. Cardiol. 51, 263–271 (2011). PubMed DOI PMC

Kim, S. S. et al. Whole-transcriptome analysis of mouse adipose tissue in response to short‑term caloric restriction. Mol. Genet. Genomics 291, 831–847 (2016). PubMed DOI

Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314–317 (2005). PubMed DOI

Pardo, R. et al. Calorie restriction prevents diet-induced insulin resistance independently of PGC-1-driven mitochondrial biogenesis in white adipose tissue. FASEB J. 33, 2343–2358 (2018). PubMed DOI

Kusminski, C. M. & Scherer, P. E. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol. Metab. 23, 435–443 (2012). PubMed DOI PMC

Katic, M. et al. Mitochondrial gene expression and increased oxidative metabolism: role in increased lifespan of fat-specific insulin receptor knock-out mice. Aging Cell 6, 827–839 (2007). PubMed DOI

Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002). PubMed DOI PMC

Vinué, Á. & González-Navarro, H. Glucose and insulin tolerance tests in the mouse. In Methods in Mouse Atherosclerosis (eds Andrés, V. & Dorado, B.) 247–254 (Springer, 2015).

Lancellotti, P. et al. The clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Heart J. Cardiovasc. Imaging 17, 1191–1229 (2016). PubMed DOI

Barone, R. et al. Skeletal muscle heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor γ coactivator 1 α1 expression. Sci. Rep. 6, 19781 (2016). PubMed DOI PMC

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). PubMed DOI

Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). PubMed DOI PMC

Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010). PubMed DOI PMC

Law, C. W., Chen, Y., Shi, W. & Smyth, G. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014). PubMed DOI PMC

Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12, 35 (2011). PubMed DOI PMC

Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013). PubMed DOI PMC

Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016). PubMed DOI PMC

Walter, W., Sánchez-Cabo, F. & Ricote, M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31, 2912–2914 (2015). PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...