Fasting-mimicking diet prevents high-fat diet effect on cardiometabolic risk and lifespan
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
P01 AG055369
NIA NIH HHS - United States
PubMed
34650272
DOI
10.1038/s42255-021-00469-6
PII: 10.1038/s42255-021-00469-6
Knihovny.cz E-zdroje
- MeSH
- dieta s vysokým obsahem tuků * MeSH
- dlouhověkost * MeSH
- kardiovaskulární nemoci metabolismus patologie MeSH
- metabolické nemoci metabolismus patologie MeSH
- myši MeSH
- omezení příjmu potravy * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
Diet-induced obesity is a major risk factor for metabolic syndrome, diabetes and cardiovascular disease. Here, we show that a 5-d fasting-mimicking diet (FMD), administered every 4 weeks for a period of 2 years, ameliorates the detrimental changes caused by consumption of a high-fat, high-calorie diet (HFCD) in female mice. We demonstrate that monthly FMD cycles inhibit HFCD-mediated obesity by reducing the accumulation of visceral and subcutaneous fat without causing loss of lean body mass. FMD cycles increase cardiac vascularity and function and resistance to cardiotoxins, prevent HFCD-dependent hyperglycaemia, hypercholesterolaemia and hyperleptinaemia and ameliorate impaired glucose and insulin tolerance. The effect of monthly FMD cycles on gene expression associated with mitochondrial metabolism and biogenesis in adipocytes and the sustained ketogenesis in HFCD-fed mice indicate a role for fat cell reprogramming in obesity prevention. These effects of an FMD on adiposity and cardiac ageing could explain the protection from HFCD-dependent early mortality.
Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
Department of Molecular Cell and Developmental Biology University of California Los Angeles CA USA
Department of Surgery Keck School of Medicine University of Southern California Los Angeles CA USA
IFOM FIRC Institute of Molecular Oncology Milano Italy
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
National Center for Health Statistics: National Health and Nutrition Examination Survey 2020 (CDC, 2020).
Fryar, C. D., Carroll, M. D. & Ogden, C. L. Prevalence of overweight, obesity, and extreme obesity among adults aged 20 and over: United States, 1960–1962 through 2013–2014 (National Center for Health Statistics, CDC, 2016).
Schrauwen, P. & Westerterp, K. R. The role of high-fat diets and physical activity in the regulation of body weight. Br. J. Nutr. 84, 417–427 (2000). PubMed DOI
Després, J.-P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006). PubMed DOI
Astrup, A. The role of dietary fat in obesity. Semin. Vasc. Med. 5, 40–47 (2005). PubMed DOI
Buettner, R., Schölmerich, J. & Bollheimer, L. C. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity 15, 798–808 (2007). PubMed DOI
Hu, S. et al. Dietary fat, but not protein or carbohydrate, regulates energy intake and causes adiposity in mice. Cell Metab. 28, 415–431 (2018). PubMed DOI
Longo, V. D. & Mattson, M. P. Fasting: molecular mechanisms and clinical applications. Cell Metab. 19, 181–192 (2014). PubMed DOI PMC
Wei, M. et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci. Transl. Med. 9, eaai8700 (2017). PubMed DOI PMC
Brandhorst, S. et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 22, 86–99 (2015). PubMed DOI PMC
Choi, I. Y. et al. A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep. 15, 2136–2146 (2016). PubMed DOI PMC
Cheng, C.-W. et al. Fasting-mimicking diet promotes Ngn3-driven β-cell regeneration to reverse diabetes. Cell 168, 775–788 (2017). PubMed DOI PMC
Di Biase, S. et al. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell 30, 136–146 (2016). PubMed DOI PMC
Rangan, P. et al. Supplementary-fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology. Cell Rep. 26, 2704–2719 (2019). PubMed DOI PMC
Ingvorsen, C., Karp, N. A. & Lelliott, C. J. The role of sex and body weight on the metabolic effects of high-fat diet in C57BL/6N mice. Nutr. Diabetes 7, e261 (2017). PubMed DOI PMC
Guo, J., Jou, W., Gavrilova, O. & Hall, K. D. Persistent diet-induced obesity in male C57BL/6 mice resulting from temporary obesigenic diets. PLoS ONE 4, e5370 (2009). PubMed DOI PMC
Klok, M. D., Jakobsdottir, S. & Drent, M. L. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes. Rev. 8, 21–34 (2007). PubMed DOI
Ioannou, G. N., Weiss, N. S., Boyko, E. J., Mozaffarian, D. & Lee, S. P. Elevated serum alanine aminotransferase activity and calculated risk of coronary heart disease in the United States. Hepatology 43, 1145–1151 (2006). PubMed DOI
Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005). PubMed DOI
Fontana, L. et al. Aging promotes the development of diet-induced murine steatohepatitis but not steatosis. Hepatology 57, 995–1004 (2013). PubMed DOI
Goedecke, J. H. et al. Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes. Am. J. Physiol. Endocrinol. Metab. 279, 1325–1334 (2000). DOI
Shiojima, I. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115, 2108–2118 (2005). PubMed DOI PMC
Xu, X. et al. Age-related impairment of vascular structure and functions. Aging Dis. 8, 590–610 (2017). PubMed DOI PMC
Lakatta, E. G. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part III: cellular and molecular clues to heart and arterial aging. Circulation 107, 490–497 (2003). PubMed DOI
Horn, M. A. & Trafford, A. W. Aging and the cardiac collagen matrix: novel mediators of fibrotic remodelling. J. Mol. Cell. Cardiol. 93, 175–185 (2016). PubMed DOI PMC
Nadruz, W. Myocardial remodeling in hypertension. J. Hum. Hypertens. 29, 1–6 (2015). PubMed DOI
Houser, S. R. et al. Animal models of heart failure. Circ. Res. 111, 131–150 (2012). PubMed DOI
Marwick, T. H. Stress echocardiography. In Echocardiography (eds Nihoyannopoulos, P. & Kisslo, J.) 491–519 (Springer, 2018).
Vallet, B., Dupuis, B. & Chopin, C. [Dobutamine: mechanisms of action and use in acute cardiovascular pathology]. Ann. Cardiol. Angeiol. 40, 397–402 (1991).
Pellikka, P. A. et al. Guidelines for performance, interpretation, and application of stress echocardiography in ischemic heart disease: from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 33, 1–41 (2020). PubMed DOI
Zhang, Y. et al. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice. Arch. Biochem. Biophys. 576, 39–48 (2015). PubMed DOI PMC
Leontieva, O. V., Paszkiewicz, G. M. & Blagosklonny, M. V. Weekly administration of rapamycin improves survival and biomarkers in obese male mice on high-fat diet. Aging Cell 13, 616–622 (2014). PubMed DOI PMC
Aires, V. et al. Healthy adiposity and extended lifespan in obese mice fed a diet supplemented with a polyphenol-rich plant extract. Sci. Rep. 9, 9116–9134 (2019). DOI
Zhu, B. et al. Alogliptin improves survival and health of mice on a high-fat diet. Aging Cell 18, e12883 (2019). PubMed DOI PMC
Brandhorst, S. & Longo, V. D. Dietary restrictions and nutrition in the prevention and treatment of cardiovascular disease. Circ. Res. 124, 952–965 (2019). PubMed DOI
Fanti, M., Mishra, A., Longo, V. D. & Brandhorst, S. Time-restricted eating, intermittent fasting, and fasting-mimicking diets in weight loss. Curr. Obes. Rep. 10, 70–80 (2021). PubMed DOI
Newman, J. C. et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 26, 547–557 (2017). PubMed DOI PMC
Rusli, F. et al. Intermittent calorie restriction largely counteracts the adverse health effects of a moderate-fat diet in aging C57BL/6J mice. Mol. Nutr. Food Res. 61, 1600677 (2017). DOI PMC
Stamler, J. et al. Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary, cardiovascular, and all-cause mortality and to longevity. JAMA 284, 311–318 (2000). PubMed DOI
Sedej, S. Ketone bodies to the rescue for an aging heart? Cardiovasc. Res. 114, e1–e2 (2018). PubMed DOI
Veech, R. L. et al. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life 69, 305–314 (2017). PubMed DOI
Greenway, F. L. Physiological adaptations to weight loss and factors favouring weight regain. Int. J. Obes. 39, 1188–1196 (2015). DOI
Graham, B., Chang, S., Lin, D., Yakubu, F. & Hill, J. O. Effect of weight cycling on susceptibility to dietary obesity. Am. J. Physiol. 259, R1096–R1102 (1990). PubMed
Simonds, S. E., Pryor, J. T. & Cowley, M. A. Repeated weight cycling in obese mice causes increased appetite and glucose intolerance. Physiol. Behav. 194, 184–190 (2018). PubMed DOI
O’Connor, K. L. et al. Altered appetite-mediating hormone concentrations precede compensatory overeating after severe, short-term energy deprivation in healthy adults. J. Nutr. 146, 209–217 (2016). PubMed DOI
Coutinho, S. R. et al. Compensatory mechanisms activated with intermittent energy restriction: a randomized control trial. Clin. Nutr. 37, 815–823 (2018). PubMed DOI
Kondo, M. et al. Caloric restriction stimulates revascularization in response to ischemia via adiponectin-mediated activation of endothelial nitric-oxide synthase. J. Biol. Chem. 284, 1718–1724 (2009). PubMed DOI PMC
Claudio, deL. et al. Long-term caloric restriction improves cardiac function, remodeling, adrenergic responsiveness, and sympathetic innervation in a model of postischemic heart failure. Circ. Heart Fail. 11, e004153 (2018). DOI
Ahmet, I., Tae, H.-J., de Cabo, R., Lakatta, E. G. & Talan, M. I. Effects of calorie restriction on cardioprotection and cardiovascular health. J. Mol. Cell. Cardiol. 51, 263–271 (2011). PubMed DOI PMC
Kim, S. S. et al. Whole-transcriptome analysis of mouse adipose tissue in response to short‑term caloric restriction. Mol. Genet. Genomics 291, 831–847 (2016). PubMed DOI
Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314–317 (2005). PubMed DOI
Pardo, R. et al. Calorie restriction prevents diet-induced insulin resistance independently of PGC-1-driven mitochondrial biogenesis in white adipose tissue. FASEB J. 33, 2343–2358 (2018). PubMed DOI
Kusminski, C. M. & Scherer, P. E. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol. Metab. 23, 435–443 (2012). PubMed DOI PMC
Katic, M. et al. Mitochondrial gene expression and increased oxidative metabolism: role in increased lifespan of fat-specific insulin receptor knock-out mice. Aging Cell 6, 827–839 (2007). PubMed DOI
Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002). PubMed DOI PMC
Vinué, Á. & González-Navarro, H. Glucose and insulin tolerance tests in the mouse. In Methods in Mouse Atherosclerosis (eds Andrés, V. & Dorado, B.) 247–254 (Springer, 2015).
Lancellotti, P. et al. The clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Heart J. Cardiovasc. Imaging 17, 1191–1229 (2016). PubMed DOI
Barone, R. et al. Skeletal muscle heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor γ coactivator 1 α1 expression. Sci. Rep. 6, 19781 (2016). PubMed DOI PMC
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). PubMed DOI
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). PubMed DOI PMC
Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010). PubMed DOI PMC
Law, C. W., Chen, Y., Shi, W. & Smyth, G. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014). PubMed DOI PMC
Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12, 35 (2011). PubMed DOI PMC
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013). PubMed DOI PMC
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016). PubMed DOI PMC
Walter, W., Sánchez-Cabo, F. & Ricote, M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31, 2912–2914 (2015). PubMed DOI