The World Spider Trait database: a centralized global open repository for curated data on spider traits
Language English Country Great Britain, England Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34651181
PubMed Central
PMC8517500
DOI
10.1093/database/baab064
PII: 6397506
Knihovny.cz E-resources
- MeSH
- Arthropods * MeSH
- Databases, Factual MeSH
- Ecosystem MeSH
- Phenotype MeSH
- Spiders * genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Spiders are a highly diversified group of arthropods and play an important role in terrestrial ecosystems as ubiquitous predators, which makes them a suitable group to test a variety of eco-evolutionary hypotheses. For this purpose, knowledge of a diverse range of species traits is required. Until now, data on spider traits have been scattered across thousands of publications produced for over two centuries and written in diverse languages. To facilitate access to such data, we developed an online database for archiving and accessing spider traits at a global scale. The database has been designed to accommodate a great variety of traits (e.g. ecological, behavioural and morphological) measured at individual, species or higher taxonomic levels. Records are accompanied by extensive metadata (e.g. location and method). The database is curated by an expert team, regularly updated and open to any user. A future goal of the growing database is to include all published and unpublished data on spider traits provided by experts worldwide and to facilitate broad cross-taxon assays in functional ecology and comparative biology. Database URL:https://spidertraits.sci.muni.cz/.
Crop Research Institute Drnovská 507 Prague 6 CZ 16106 Czechia
Department of Anthropology University of Zürich Winterthurerstrasse 190 Zürich 8057 Switzerland
Department of Biological Sciences Macquarie University 6 Wally's Walk Sydney NSW 2109 Australia
Fundación Protectora Ambiental Planadas Tolima (FUPAPT Tolima Colombia
Institute of Ecology and Evolution University of Bern Baltzerstrasse 6 Bern 3012 Switzerland
Instituto de Biología Subtropical Puerto Iguazú Argentina
Molecular Ecology Group Corso Tonolli 50 Pallanza 28922 Italy
Natural Sciences Auckland War Memorial Museum Parnell Auckland 1010 New Zealand
Slovak Academy of Sciences Institute of Forest Ecology Ľ Štúra 2 Zvolen 960 01 Slovak Republic
Te Aka Mātuatua School of Science University of Waikato Private Bag 3105 Hamilton 3240 New Zealand
UMR CNRS 6553 ECOBIO Université de Rennes 1 263 Avenue du General Leclerc Rennes 35042 France
Zoological Institute and Museum University of Greifswald Loitzer Str 26 Greifswald 17489 Germany
See more in PubMed
World Spider Catalog (2021) World Spider Catalog. Version 22.0 Natural History Museum Bern. https://wsc.nmbe.ch (20 February 2021, date last accessed).
Dimitrov D. and Hormiga G. (2021) Spider diversification through space and time. Annu. Rev. Entomol., 66, 225–241. PubMed
Nyffeler M. and Birkhofer K. (2017) An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci. Nat., 104, 30. PubMed PMC
Michalko R., Pekár S., Duľa M.. et al. (2019) Global patterns in the biocontrol efficacy of spiders: a meta‐analysis. Global Ecol. Biogeogr., 28, 1366–1378.
Cardoso P., Arnedo M.A., Triantis K.A.. et al. (2010) Drivers of diversity in Macaronesian spiders and the role of species extinctions. J. Biogeogr., 37, 1034–1046.
Heim M., Keerl D. and Scheibel T. (2009) Spider silk: from soluble protein to extraordinary fiber. Angew. Chem. Int. Edit., 48, 3584–3596. PubMed
Matavel A., Estrada G., De Marco Almeida F. (2016) Spider venom and drug discovery: a review. In: Gopalakrishnakone P, Corzo G, de Lima M, Diego-García E (eds). Spider Venoms. Toxinology. Springer, Dordrecht, pp. 273–292.
Liu J., May-Collado J.L., Pekár S.. et al. (2016) A revised and dated phylogeny of cobweb spiders (Araneae, Araneoidea, Theridiidae): a predatory Cretaceous lineage diversifying in the era of the ants. Mol. Phylogenet. Evol., 94, 658–675. PubMed
Pekár S., Coddington J.A. and Blackledge T. (2012) Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets. Evolution, 66, 776–806. PubMed
Lowe E.C., Wolff J.O., Aceves-Aparicio A.. et al. (2020) Towards establishment of a centralized spider traits database. J. Arachnol., 48, 103–109.
Mammola S., Michalik P., Hebets E.A.. et al. (2017) Record breaking achievements by spiders and the scientists who study them. PeerJ, 5, e3972. PubMed PMC
Kissling W.D., Walls R., Bowser A.. et al. (2018a) Towards global data products of Essential Biodiversity Variables on species traits. Nat. Ecol. Evol., 2, 1531–1540. PubMed
Kissling W.D., Ahumada J.A., Bowser A.. et al. (2018b) Building essential biodiversity variables (EBV s) of species distribution and abundance at a global scale. Biol. Rev., 93, 600–625. PubMed
Kattge J., Diaz S., Lavorel S.. et al. (2011) TRY–a global database of plant traits. Glob. Change Biol., 17, 2905–2935.
Madin J.S., Anderson K.D., Andreasen M.H.. et al. (2016) The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Sci. Data, 3, 1–22. PubMed PMC
Grimm A., Ramírez A.M.P., Moulherat S.. et al. (2014) Life-history trait database of European reptile species. Nat. Conserv., 9, 45.
Brun P., Payne M.R. and Kiørboe T. (2017) A trait database for marine copepods. Earth Syst. Sci. Data, 9, 99–113.
Homburg K., Homburg N., Schäfer F.. et al. (2014) Carabids.org–a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers., 7, 195–205.
Kattge J., Bönisch G., Díaz S.. et al. (2020) TRY plant trait database–enhanced coverage and open access. Glob. Change Biol., 26, 119–188. PubMed
Nentwig W., Blick T., Bosmans R.. et al. (2021) Spiders of Europe. Version 2.2021. https://www.araneae.nmbe.ch (15 February 2021, date last accessed).
Araujo D., Schneider M.C., Paula-Neto E.. et al. (2021) The Spider Cytogenetic Database. www.arthropodacytogenetics.bio.br/spiderdatabase (10 February 2021, date last accessed).
Wood D.L., Miljenović T., Cai S.. et al. (2009) ArachnoServer: a database of protein toxins from spiders. BMC Genomics, 10, 375. PubMed PMC
Cardoso P., Pekár S., Jocqué R.. et al. (2011) Global patterns of guild composition and functional diversity of spiders. PLoS One, 6, e21710. PubMed PMC
Birkhofer K., Wolters V. and Diekötter T. (2014) Grassy margins along organically managed cereal fields foster trait diversity and taxonomic distinctness of arthropod communities. Insect Conserv. Divers., 7, 274–287.
Wolff J.O., Nentwig W. and Gorb S.N. (2013) The great silk alternative: multiple co-evolution of web loss and sticky hairs in spiders. PLoS One, 8, e62682. PubMed PMC
Michalko R. and Pekár S. (2016) Different hunting strategies of generalist predators result in functional differences. Oecologia, 181, 1187–1197. PubMed
Pekár S. (2012) Spiders (Araneae) in the pesticide world: an ecotoxicological review. Pest Manag. Sci., 68, 1438–1446. PubMed
Pekár S. (2014) Comparative analysis of primary defences in spiders (Araneae). J. Anim. Ecol., 83, 779–790. PubMed
Pekár S. and Toft S. (2015) Trophic specialisation in a predatory group: the case of prey-specialised spiders (Araneae). Biol. Rev., 90, 744–761. PubMed
Moretti M., Dias A.T., De Bello F.. et al. (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Func. Ecol., 31, 558–567.
Birkhofer K., Smith H.G., Weisser W.W.. et al. (2015) Land‐use effects on the functional distinctness of arthropod communities. Ecography, 38, 889–900.
Gallagher R.V., Falster D.S., Maitner B.S.. et al. (2020) Open Science principles for accelerating trait-based science across the Tree of Life. Nat. Ecol. Evol., 4, 294–303. PubMed
Birkhofer K., Gossner M.M., Diekötter T.. et al. (2017) Land‐use type and intensity differentially filter traits in above‐ and below‐ground arthropod communities. J. Anim. Ecol., 86, 511–520. PubMed
Wilkinson M.D., Dumontier M., Aalbersberg I.J.. et al. (2016) Comment: the FAIR guiding principles for scientific data management and stewardship. Sci. Data, 3, 160018. PubMed PMC
Wong M.K., Guénard B. and Lewis O.T. (2019) Trait‐based ecology of terrestrial arthropods. Biol. Rev., 94, 999–1022. PubMed PMC
McGill B.J., Enquist B.J., Weiher E.. et al. (2006) Rebuilding community ecology from functional traits. Trends Ecol. Evol., 21, 178–185. PubMed
Schneider F.D., Fichtmueller D., Gossner M.M.. et al. (2019) Towards an ecological trait‐data standard. Methods Ecol Evol., 10, 2006–2019.
R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (21 May 2020, date last accessed).
Paradis E. and Schliep K. (2018) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528. PubMed
Titley M.A., Snaddon J.L. and Turner E.C. (2017) Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS One, 12, e0189577. PubMed PMC
Cardoso P. (2021) ARAKNO: ARAchnid KNowledge Online. R package. https://cran.rstudio.com/web/packages/arakno/index.html version 1.1.0. https://CRAN.R-project.org/package=arakno (2 June 2021, date last accessed).
Wheeler W.C., Coddington J.A., Crowley L.M.. et al. (2017) The spider tree of life: phylogeny of Araneae based on target‐gene analyses from an extensive taxon sampling. Cladistics, 33, 574–616. PubMed