Kappa but not delta or mu opioid receptors form homodimers at low membrane densities
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
UL 312/6-1
deutsche forschungsgemeinschaft
RTG 2202
deutsche forschungsgemeinschaft
EXC 294
deutsche forschungsgemeinschaft
CRC 992
deutsche forschungsgemeinschaft
EXC-2189-Project ID: 390939984
deutsche forschungsgemeinschaft
GA17-05903S
grantová agentura české republiky
SVV260427/2020
univerzita karlova v praze
FM/a/2017-2-072
univerzita karlova v praze
SVV260427/2018
univerzita karlova v praze
PubMed
34657173
PubMed Central
PMC8629795
DOI
10.1007/s00018-021-03963-y
PII: 10.1007/s00018-021-03963-y
Knihovny.cz E-zdroje
- Klíčová slova
- Dimerization affinity, G protein-coupled receptors, Monomer-dimer equilibrium, Opioid receptors, Single-molecule imaging,
- MeSH
- analýza jednotlivých buněk metody MeSH
- buněčná membrána metabolismus MeSH
- konformace proteinů MeSH
- krysa rodu Rattus MeSH
- multimerizace proteinu MeSH
- myši MeSH
- receptory opiátové delta chemie metabolismus MeSH
- receptory opiátové mu chemie metabolismus MeSH
- zobrazení jednotlivé molekuly metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- receptory opiátové delta MeSH
- receptory opiátové mu MeSH
Opioid receptors (ORs) have been observed as homo- and heterodimers, but it is unclear if the dimers are stable under physiological conditions, and whether monomers or dimers comprise the predominant fraction in a cell. Here, we use three live-cell imaging approaches to assess dimerization of ORs at expression levels that are 10-100 × smaller than in classical biochemical assays. At membrane densities around 25/µm2, a split-GFP assay reveals that κOR dimerizes, while µOR and δOR stay monomeric. At receptor densities < 5/µm2, single-molecule imaging showed no κOR dimers, supporting the concept that dimer formation depends on receptor membrane density. To directly observe the transition from monomers to dimers, we used a single-molecule assay to assess membrane protein interactions at densities up to 100 × higher than conventional single-molecule imaging. We observe that κOR is monomeric at densities < 10/µm2 and forms dimers at densities that are considered physiological. In contrast, µOR and δOR stay monomeric even at the highest densities covered by our approach. The observation of long-lasting co-localization of red and green κOR spots suggests that it is a specific effect based on OR dimerization and not an artefact of coincidental encounters.
BIOSS Centre for Biological Signalling Studies University of Freiburg Freiburg Germany
CIBSS Centre for Integrative Biological Signalling Studies University of Freiburg Freiburg Germany
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Department of Biomathematics Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Faculty of Biology University of Freiburg Freiburg Germany
Institute of Internal Medicine 4 Medical Center of the University of Freiburg Freiburg Germany
Institute of Pharmaceutical Sciences University of Freiburg Freiburg Germany
Zobrazit více v PubMed
Milligan G, Ward JW, Marsango S. GPCR homo-oligomerization. Curr Opin Cell Biol. 2019;57:40–47. doi: 10.1016/j.ceb.2018.10.007. PubMed DOI PMC
Cvejic S, Devi LA. Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J Biol Chem. 1997;272:26959–26964. doi: 10.1074/jbc.272.43.26959. PubMed DOI
Jordan BA, Devi LA. G-protein-coupled receptor heterodimerization modulates receptor function. Nature. 1999;399:697–700. doi: 10.1038/21441. PubMed DOI PMC
George SR et al (2000) Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem 275:26128–26135 PubMed
Ramsay D, Kellett E, McVey M, Rees S, Milligan G. Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Biochem J. 2002;365:429–440. doi: 10.1042/bj20020251. PubMed DOI PMC
Wang D, Sun X, Bohn LM, Sadée W. Opioid receptor homo- and heterodimerization in living cells by quantitative bioluminescence resonance energy transfer. Mol Pharmacol. 2005;67:2173–2184. doi: 10.1124/mol.104.010272. PubMed DOI
Hern J, et al. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci USA. 2010;107:2693–2698. doi: 10.1073/pnas.0907915107. PubMed DOI PMC
Madl J, et al. Resting state Orai1 diffuses as homotetramer in the plasma membrane of live mammalian cells. J Biol Chem. 2010;285:41135–41142. doi: 10.1074/jbc.M110.177881. PubMed DOI PMC
Kasai RS, et al. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol. 2011;192:463–480. doi: 10.1083/jcb.201009128. PubMed DOI PMC
Calebiro D, et al. Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci USA. 2013;110:743–748. doi: 10.1073/pnas.1205798110. PubMed DOI PMC
Gentzsch C, et al. Selective and wash-resistant fluorescent dihydrocodeinone derivatives allow single-molecule imaging of μ-opioid receptor dimerization. Angew Chem Int Ed. 2020;59:5958–5964. doi: 10.1002/anie.201912683. PubMed DOI PMC
Möller J, et al. Single-molecule analysis reveals agonist-specific dimer formation of μ-opioid receptors. Nat Chem Biol. 2020;16:946–954. doi: 10.1038/s41589-020-0566-1. PubMed DOI
Drakopoulos A, et al. Investigation of inactive-state κ opioid receptor homodimerization via single-molecule microscopy using new antagonistic fluorescent probes. J Med Chem. 2020;63:3596–3609. doi: 10.1021/acs.jmedchem.9b02011. PubMed DOI
Asher WB, et al. Single-molecule FRET imaging of GPCR dimers in living cells. Nat Methods. 2021;18:397–405. doi: 10.1038/s41592-021-01081-y. PubMed DOI PMC
Wehr MC, et al. Monitoring regulated protein-protein interactions using split TEV. Nat Methods. 2006;3:985–993. doi: 10.1038/nmeth967. PubMed DOI
Bishayee S et al (1989) Ligand-induced dimerization of the platelet-derived growth factor receptor. Monomer-dimer interconversion occurs independent of receptor phosphorylation. J Biol Chem 264:11699–11705 PubMed
Choi S, et al. Transmembrane domain-induced oligomerization Is crucial for the functions of syndecan-2 and syndecan-4. J Biol Chem. 2005;280:42573–42579. doi: 10.1074/jbc.M509238200. PubMed DOI
Belyy V, et al. PhotoGate microscopy to track single molecules in crowded environments. Nat Commun. 2017;8:13978. doi: 10.1038/ncomms13978. PubMed DOI PMC
Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell. 2002;9:789–798. doi: 10.1016/S1097-2765(02)00496-3. PubMed DOI
Kodama Y, Hu CD. Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. Biotechniques. 2012;53:285–298. doi: 10.2144/000113943. PubMed DOI
Cabantous S, Terwilliger TC, Waldo GS. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol. 2005;23:102–107. doi: 10.1038/nbt1044. PubMed DOI
Zacharias DA, Violin JD, Newton AC, Tsien RY. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 2002;296:913–916. doi: 10.1126/science.1068539. PubMed DOI
Sbalzarini IF, Koumoutsakos P. Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol. 2005;151:182–195. doi: 10.1016/j.jsb.2005.06.002. PubMed DOI
Beutel O, et al. Two-dimensional trap for ultrasensitive quantification of transient protein interactions. ACS Nano. 2015;9:9783–9791. doi: 10.1021/acsnano.5b02696. PubMed DOI
Sarabipour S, Hristova K. Mechanism of FGF receptor dimerization and activation. Nat Commun. 2016;7:10262. doi: 10.1038/ncomms10262. PubMed DOI PMC
Stoneman MR, et al. A general method to quantify ligand-driven oligomerization from fluorescence-based images. Nat Methods. 2019;16:493–496. doi: 10.1038/s41592-019-0408-9. PubMed DOI PMC
Uhlén M, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419. doi: 10.1126/science.1260419. PubMed DOI
Danke C, et al. Adjusting transgene expression levels in lymphocytes with a set of inducible promoters. J Gene Med. 2010;2:501–515. doi: 10.1002/jgm.1461. PubMed DOI