Multi-geochemical background comparison and the identification of the best normalizer for the estimation of PTE contamination in agricultural soil
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34661834
DOI
10.1007/s10653-021-01109-4
PII: 10.1007/s10653-021-01109-4
Knihovny.cz E-zdroje
- Klíčová slova
- Correlation matrix, European average value, Multivariate statistics, Proxy, World average value,
- MeSH
- hodnocení rizik MeSH
- látky znečišťující půdu * analýza MeSH
- monitorování životního prostředí metody MeSH
- olovo analýza MeSH
- půda MeSH
- těžké kovy * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- látky znečišťující půdu * MeSH
- olovo MeSH
- půda MeSH
- těžké kovy * MeSH
Identifying a suitable geochemical background level (GBL) and an appropriate normalizer is imperative for ensuring soil quality, health, and security. The objective of this study was to identify the appropriate normalizer and suitable GBL for determining PTE enrichment levels in agricultural soils and investigate if there are any statistical differences due to the GBL [World Average Value (WAV) European Average Value (EAV)] used. Forty-nine topsoil samples were obtained from seven agricultural communities in the Frdek-Mstek District (Czech Republic). Portable X-ray fluorescence was used to determine the total PTEs (Cr, Ni, Cu, Y, Ba, Th, As, Pb, and Zn) concentration levels in the soil. Correlation matrix analysis was used to determine the metallic relationship between the PTEs and the normalizers (Al, Fe, Ti, Zr, Sr and Rb). Pollution indices such as contamination factor (CF), geoaccumulation index (Igeo) and enrichment factor (EF) analysis were used to determine the most suitable GBL. Al, Fe, Sr, Ti and Rb strongly correlated with the CF, Igeo and EF, whereas WAV performed better than the other geochemical background (EAV). The results indicated that Rb was the suitable normalizer and WAV was the appropriate GBL for agricultural soil and provided a foundation for evaluating and surveilling soil quality and health in agricultural soil.
Zobrazit více v PubMed
Agyeman, P. C., Ahado, S. K., Borůvka, L., Biney, J. K. M., Sarkodie, V. Y. O., Kebonye, N. M., & Kingsley, J. (2021a). Trend analysis of global usage of digital soil mapping models in the prediction of potentially toxic elements in soil/sediments: a bibliometric review. Environmental Geochemistry and Health, 43(5), 1715–1739.
Agyeman, P. C., Ahado, S. K., Kingsley, J., Kebonye, N. M., Biney, J. K. M., Borůvka, L., ... & Kocarek, M. (2021b). Source apportionment, contamination levels, and spatial prediction of potentially toxic elements in selected soils of the Czech Republic. Environmental geochemistry and health, 43(1), 601–620.
Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238. https://doi.org/10.1007/s10661-007-9678-2 DOI
Alloway, B. (2013). Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Choice Reviews Online. https://doi.org/10.5860/choice.50-3862 DOI
Aloupi, M., & Angelidis, M. O. (2001). Geochemistry of natural and anthropogenic metals in the coastal sediments of the island of Lesvos Aegean Sea. Environmental Pollution, 113(2), 211–219. https://doi.org/10.1016/S0269-7491(00)00173-1 DOI
Baize, D., & Sterckeman, T. (2001). Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements. Science of the Total Environment, 264(1–2), 127–139. https://doi.org/10.1016/S0048-9697(00)00615-X DOI
Birke, M., Reimann, C., Oorts, K., Rauch, U., Demetriades, A., Dinelli, E., et al. (2016). Use of GEMAS data for risk assessment of cadmium in European agricultural and grazing land soil under the REACH Regulation. Applied Geochemistry, 74, 109–121. https://doi.org/10.1016/j.apgeochem.2016.08.014 DOI
Carvalho, A., Schropp, S. J., Sloane, G. M., Biernacki, T. P., & Seal, T. L. (2002). Development of an interpretive tool for assessment of metal enrichment in Florida freshwater sediment. Tallahassee, Florida: Florida Department of Environmental Protection.
Çevik, F., Göksu, M. Z. L., Derici, O. B., & Findik, Ö. (2009). An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152(1–4), 309–317. https://doi.org/10.1007/s10661-008-0317-3 DOI
Chen, J., Ji, J., Chen, Y., An, Z., Dearing, J. A., & Wang, Y. (2000). Use of rubidium to date loess and paleosols of the Louchan sequence Central China. Quaternary Research, 54(2), 198–205. https://doi.org/10.1006/qres.2000.2159 DOI
Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512–513, 143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025 DOI
Cui, C., Hu, B. M., Zhao, L., & Liu, S. (2011). Titanium alloy production technology, market prospects and industry development. Materials and Design, 32(3), 1684–1691. https://doi.org/10.1016/j.matdes.2010.09.011 DOI
Driver, J. P., Pesti, G. M., Bakalli, R. I., & Edwards, H. M. (2006). The effect of feeding calcium- and phosphorus-deficient diets to broiler chickens during the starting and growing-finishing phases on carcass quality. Poultry Science, 85(11), 1939–1946. https://doi.org/10.1093/ps/85.11.1939 DOI
EPA. (1998). Environmental technology verification report–field portable X-ray fluorescence analyzer (Metorex X-MET 920-P and 940).
Ergin, M., Saydam, C., Baştürk, Ö., Erdem, E., & Yörük, R. (1991). Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and İzmit Bay) of the northeastern Sea of Marmara. Chemical Geology, 91(3), 269–285. https://doi.org/10.1016/0009-2541(91)90004-B DOI
Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114(3), 313–324. https://doi.org/10.1016/S0269-7491(00)00243-8 DOI
Gąsiorek, M., Kowalska, J., Mazurek, R., & Pająk, M. (2017). Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the planty park in Krakow (Poland). Chemosphere, 179, 148–158. https://doi.org/10.1016/j.chemosphere.2017.03.106 DOI
Ghrefat, H., & Yusuf, N. (2006). Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam Jordan. Chemosphere, 65(11), 2114–2121. https://doi.org/10.1016/j.chemosphere.2006.06.043 DOI
Hakanson, L. (1980). An ecological risk index for aquatic pollution control a sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8 DOI
Herut, B., & Sandler, A. (2006). Normalization methods for pollutants in marine sediments: review and recommendations for the Mediterranean. New York: UNEP/MAP. http://www.sednet.org/download/0604_herut_and_sandler_report.pdf . Accessed 16 August 2020.
Hu, X., Wang, C., & Zou, L. (2011). Characteristics of heavy metals and Pb isotopic signatures in sediment cores collected from typical urban shallow lakes in Nanjing China. Journal of Environmental Management, 92(3), 742–748. https://doi.org/10.1016/j.jenvman.2010.10.016 DOI
Iñigo, V., Andrades, M. S., Alonso-Martirena, J. I., Marín, A., & Jiménez-Ballesta, R. (2014). Background values and distribution trends of Cu and Zn in soils of humid Mediterranean environment. Chemistry and Ecology, 30(3), 252–266. https://doi.org/10.1080/02757540.2013.844797 DOI
Jahedi, M., Zahiri, S., Gulizia, S., Tiganis, B., Tang, C., & Fraser, D. (2009). Direct manufacturing of titanium parts by cold spray. Materials Science Forum, 618(619), 505–508. DOI
Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). CRC Press, Taylor and Francis Group.
Karim, Z., Qureshi, B. A., & Mumtaz, M. (2015). Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecological Indicators, 48, 358–364. https://doi.org/10.1016/j.ecolind.2014.08.032 DOI
Karimi Nezhad, M. T., Tabatabaii, S. M., & Gholami, A. (2015). Geochemical assessment of steel smelter-impacted urban soils, Ahvaz Iran. Journal of Geochemical Exploration, 152, 91–109. https://doi.org/10.1016/j.gexplo.2015.02.005 DOI
Kebonye, N. M., & Eze, P. N. (2019). Zirconium as a suitable reference element for estimating potentially toxic element enrichment in treated wastewater discharge vicinity. Environmental Monitoring and Assessment, 191(11), 1–15. https://doi.org/10.1007/s10661-019-7812-6 DOI
Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma, 221–222, 82–90. https://doi.org/10.1016/j.geoderma.2014.01.007 DOI
Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z DOI
Kozák, J. (2010). Soil Atlas of the Czech Republic. Czech University of Life Sciences.
Liu, W. X., Li, X. D., Shen, Z. G., Wang, D. C., Wai, O. W. H., & Li, Y. S. (2003). Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environmental Pollution, 121(3), 377–388. https://doi.org/10.1016/S0269-7491(02)00234-8 DOI
Loska, K., Cebula, J., Pelczar, J., Wiechuła, D., & Kwapuliński, J. (1997). Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water, Air, and Soil Pollution, 93(1–4), 347–365. https://doi.org/10.1007/bf02404766 DOI
Luoma, S. N. (2018). Processes affecting metal concentrations in estuarine and coastal marine sediments. Heavy metals in the marine environment, 51–66. Doi: https://doi.org/10.1201/9781351073158.
Massas, I., Ehaliotis, C., Gerontidis, S., & Sarris, E. (2009). Elevated heavy metal concentrations in top soils of an Aegean island town (Greece): total and available forms, origin and distribution. Environmental Monitoring and Assessment, 151(1–4), 105–116. https://doi.org/10.1007/s10661-008-0253-2 DOI
Matschullat, J., Ottenstein, R., & Reimann, C. (2000). Geochemical background-can we calculate it? Environmental Geology. 39. Springer-Verlag. https://link.springer.com/content/pdf/https://doi.org/10.1007/s002549900084.pdf . Accessed 16 August 2020.
Matthai, C., & Birch, G. (2001). Detection of anthropogenic Cu, Pb and Zn in continental shelf sediments off Sydney, Australia–A new approach using normalization with cobalt. Marine Pollution Bulletin, 42(11), 1055–1063. https://doi.org/10.1016/S0025-326X(01)00068-6 DOI
Natesan, U., & Ranga Rama Seshan, B. (2011). Vertical profile of heavy metal concentration in core sediments of Buckingham canal, Ennore. Indian Journal of Marine Sciences (40). http://nopr.niscair.res.in/handle/123456789/11375 . Accessed 16 August 2020.
Nemr, A. E., Khaled, A., & Sikaily, A. E. (2006). Distribution and statistical analysis of leachable and total heavy metals in the sediments of the suez gulf. Environmental Monitoring and Assessment, 118(1–3), 89–112. https://doi.org/10.1007/s10661-006-0985-9 DOI
Nicholson, F. A., Chambers, B. J., Williams, J. R., & Unwin, R. J. (1999). Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresource Technology, 70(1), 23–31. https://doi.org/10.1016/S0960-8524(99)00017-6 DOI
Oorts, K., & Schoeters, I. (2014). GEMAS: Use of monitoring data for risk assessment of metals in soil. ui.adsabs.harvard.edu, 16, 4886. https://ui.adsabs.harvard.edu/abs/2014EGUGA..16.4886O/abstract . Accessed 16 August 2020.
Peter, E., & Adeniyi, G. (2011). Spatial relationships of urban land use, soils and heavy metal concentrations in Lagos mainland area. Journal of Applied Sciences and Environmental Management, 15(2), 391–399. https://doi.org/10.4314/jasem.v15i2.68533 DOI
Plant, J., Smith, D., Smith, B., & Williams, L. (2001). Environmental geochemistry at the global scale. Applied Geochemistry, 16(11–12), 1291–1308. https://doi.org/10.1016/S0883-2927(01)00036-1 DOI
Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in Parks of Beijing. Journal of China University of Geosciences, 19(3), 230–241. https://doi.org/10.1016/S1002-0705(08)60042-4 DOI
Reimann, C., Birke, M., Demetriades, A., & Filzmoser, P. (2014). Chemistry of Europe’s agricultural soils, part A. https://www.schweizerbart.de/publications/detail/artno/186030200 . Accessed 16 August 2020.
Reimann, C. (2007). Hintergrund und Schwellenwert: unbestimmbare Grössen? https://scholar.google.com/scholar?q=Hintergrund und Schwellenwert: unbestimmbare Grössen. Accessed 16 August 2020.
Romic, M., & Romic, D. (2003). Heavy metals distribution in agricultural topsoils in urban area. Environmental Geology, 43(7), 795–805. https://doi.org/10.1007/s00254-002-0694-9 DOI
Smith, D. B., Cannon, W. F., Woodruff, L. G., Solano, F., Kilburn, J. E., & Fey, D. L. (2013). Geochemical and mineralogical data for soils of the conterminous United States. U.S Geological Survey Data Series, 801, 1–26. https://doi.org/10.3133/ds801 DOI
Weather Spark. (2016). Average weather in Frýdek-Místek, Czechia, Year Round–Weather Spark. https://weatherspark.com/y/83671/Average-Weather-in-Frýdek-Místek-Czechia-Year-Round . Accessed 14 September 2020.
Sun, M. C. Y., Doong, R., Wu, S., & Fu, C. (2007). Concentrations and correlations of trace metals in estuarine sediments–interpretation by multivariate statistical analysis and elemental normalization. Environmental Engineering (Vol. 17). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.568.6496&rep=rep1&type=pdf . Accessed 16 August 2020.
Swarnalatha, K., Letha, J., Ayoob, S., & Sheela, A. M. (2013). Identification of silicon (Si) as an appropriate normaliser for estimating the heavy metals enrichment of an urban lake system. Journal of Environmental Management, 129, 54–61. https://doi.org/10.1016/j.jenvman.2013.05.039 DOI
Thi, T., Dung, T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental. https://doi.org/10.1007/s11157-013-9315-1 DOI
UNEP. (1995). United Nations Environment Programme February 199S. wedocs.unep.org. https://wedocs.unep.org/bitstream/handle/20.500.11822/31553/1/rsrm063.pdf . Accessed 16 August 2020.
Vacek, O., Vašát, R., & Borůvka, L. (2020). Quantifying the pedodiversity-elevation relations. Geoderma, 373, 114441. https://doi.org/10.1016/j.geoderma.2020.114441 DOI
Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051 DOI
WRB, I. W. G. (2015). World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106.
Wu, Z., Zhang, L., Xia, T., Jia, X., & Wang, S. (2020). Heavy metal pollution and human health risk assessment at mercury smelting sites in Wanshan district of Guizhou Province, China. RSC Advances, 10(39), 23066–23079.
Xu, G., Liu, J., Pei, S., Hu, G., & Kong, X. (2015). Geochemical background and ecological risk of heavy metals in surface sediments from the west Zhoushan fishing ground of East China Sea. Environmental Science and Pollution Research, 22(24), 20283–20294. https://doi.org/10.1007/s11356-015-5662-5 DOI
Yalcin, F. (2020). Data analysis of beach sands’ chemical analysis using multivariate statistical methods and heavy metal distribution maps: the case of Moonlight Beach sands, Kemer, Antalya, Turkey. Symmetry, 12(9), 1538.
Yan, D., Bai, Z., & Liu, X. (2020). Heavy-metal pollution characteristics and influencing factors in agricultural soils: Evidence from Shuozhou city, Shanxi province, China. Sustainability, 12(5), 1907.
Ye, C., Li, S., Zhang, Y., & Zhang, Q. (2011). Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir China. Journal of Hazardous Materials, 191(1–3), 366–372. https://doi.org/10.1016/j.jhazmat.2011.04.090 DOI
Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China-Weathering features, anthropogenic impact and chemical fluxes. Estuarine Coastal and Shelf Science, 54(6), 1051–1070. https://doi.org/10.1006/ecss.2001.0879 DOI
Zhou, F., Guo, H., & Liu, L. (2007). Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong. Environmental Geology, 53(2), 295–305. https://doi.org/10.1007/s00254-007-0644-7 DOI