FRET-based assay for intracellular evaluation of α-synuclein aggregation inhibitors
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34687236
DOI
10.1111/jnc.15528
Knihovny.cz E-resources
- Keywords
- FRET, Parkinson's Disease, amyloid, assay, intracellular, α-synuclein,
- MeSH
- alpha-Synuclein analysis antagonists & inhibitors metabolism MeSH
- Benzodioxoles pharmacology MeSH
- Electroporation methods MeSH
- HeLa Cells MeSH
- Intracellular Fluid chemistry drug effects metabolism MeSH
- Humans MeSH
- Protein Aggregates drug effects physiology MeSH
- Pyrazoles pharmacology MeSH
- Fluorescence Resonance Energy Transfer methods MeSH
- Cell Survival drug effects physiology MeSH
- Dose-Response Relationship, Drug MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 3-(1,3-benzodioxol-5-yl)-5-(3-bromophenyl)-1H-pyrazole MeSH Browser
- alpha-Synuclein MeSH
- Benzodioxoles MeSH
- Protein Aggregates MeSH
- Pyrazoles MeSH
Aggregation of small neuronal protein α-synuclein (αSyn) in amyloid fibrils is considered to be one of the main causes of Parkinson's disease. Inhibition of this aggregation is a promising approach for disease treatment. Dozens of compounds able to inhibit αSyn fibrillization in solution were developed during the last decade. However, the applicability of most of them in the cellular environment was not established because of the absence of a suitable cell-based assay. In this work, we developed an assay for testing αSyn aggregation inhibitors in cells that is based on fluorescence resonance energy transfer (FRET) between labeled αSyn molecules in fibrils. The assay directly reports the amount of fibrillized αSyn and is more reliable than the assays based on cell viability. Moreover, we showed that cell viability decline does not always correlate with the amount of misfolded αSyn. The developed FRET-based assay does not interfere with the aggregation process and is suitable for high-throughput testing of αSyn aggregation inhibitors. Its application can sort out non-specific inhibitors and thus significantly facilitate the development of drugs for Parkinson`s disease.
See more in PubMed
Afitska, K., Fucikova, A., Shvadchak, V. V., & Yushchenko, D. A. (2017). Modification of C terminus provides new insights into the mechanism of α-synuclein aggregation. Biophysical Journal, 113, 2182-2191. https://doi.org/10.1016/j.bpj.2017.08.027.
Afitska, K., Priss, A., Yushchenko, D. A., & Shvadchak, V. V. (2020). Structural optimization of inhibitors of α-synuclein fibril growth: Affinity to the fibril end as a crucial factor. Journal of Molecular Biology, 432, 967-977. https://doi.org/10.1016/j.jmb.2019.11.019.
Agerschou, E. D., Borgmann, V., Wordehoff, M. M., & Hoyer, W. (2020). Inhibitor and substrate cooperate to inhibit amyloid fibril elongation of α-synuclein. Chemical Science, 11, 11331-11337. https://doi.org/10.1039/D0SC04051G.
Agerschou, E. D., Flagmeier, P., Saridaki, T., Galvagnion, C., Komnig, D., Heid, L., Prasad, V., Shaykhalishahi, H., Willbold, D., Dobson, C. M., Voigt, A., Falkenburger, B., Hoyer, W., & Buell, A. K. (2019). An engineered monomer binding-protein for α-synuclein efficiently inhibits the proliferation of amyloid fibrils. eLife, 8, https://doi.org/10.7554/eLife.46112.
Ardah, M. T., Ghanem, S. S., Abdulla, S. A., Guohua, L. V., Emara, M. M., Paleologou, K. E., Vaikath, N. N., Jia-Hong, L. U., Min, L. I., Konstantinos, V., David, E., & El-Agnaf, O. M. A. (2020). Inhibition of alpha-synuclein seeded fibril formation and toxicity by herbal medicinal extracts. BMC Complementary Medicine and Therapies, 20, (1). https://doi.org/10.1186/s12906-020-2849-1.
Bieschke, J., Russ, J., Friedrich, R. P., Ehrnhoefer, D. E., Wobst, H., Neugebauer, K., & Wanker, E. E. (2010). EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proceedings of the National Academy of Sciences, 107(17), 7710-7715. https://doi.org/10.1073/pnas.0910723107.
Buell, A. K., Galvagnion, C., Gaspar, R., Sparr, E., Vendruscolo, M., Knowles, T. P. J., Linse, S., & Dobson, C. M. (2014). Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proceedings of the National Academy of Sciences, 111(21), 7671-7676. http://dx.doi.org/https://doi.org/10.1073/pnas.1315346111
Chartier-Harlin, M.-C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., Levecque, C., Larvor, L., Andrieux, J., Hulihan, M., Waucquier, N., Defebvre, L., Amouyel, P., Farrer, M., & Destée, A. (2004). α-Synuclein locus duplication as a cause of familial Parkinson's disease. The Lancet, 364(9440), 1167-1169. https://doi.org/10.1016/s0140-6736(04)17103-1.
Cooper, J. M., Wiklander, P. B. O., Nordin, J. Z., Al-Shawi, R., Wood, M. J., Vithlani, M., Schapira, A. H. V., Simons, J. P., El-Andaloussi, S., & Alvarez-Erviti, L. (2014). Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Movement Disorders, 29, 1476-1485. https://doi.org/10.1002/mds.25978.
Covell, D. J., Robinson, J. L., Akhtar, R. S., Grossman, M., Weintraub, D., Bucklin, H. M., Pitkin, R. M., Riddle, D., Yousef, A., Trojanowski, J. Q., & Lee, V.-M.-Y. (2017). Novel conformation-selective α-synuclein antibodies raised against different in vitro fibril forms show distinct patterns of Lewy pathology in Parkinson's disease. Neuropathology and Applied Neurobiology, 43(7), 604-620. https://doi.org/10.1111/nan.12402.
Dominguez-Meijide, A., Vasili, E., König, A., Cima-Omori, M.-S., Ibáñez de Opakua, A., Leonov, A., Ryazanov, S., Zweckstetter, M., Griesinger, C., & Outeiro, T. F. (2020). Effects of pharmacological modulators of α-synuclein and tau aggregation and internalization. Scientific Reports, 10, 12827. https://doi.org/10.1038/s41598-020-69744-y.
Feng, S.-T., Wang, Z.-Z., Yuan, Y.-H., Sun, H.-M., Chen, N.-H., & Zhang, Y. (2021). Update on the association between α-synuclein and tau with mitochondrial dysfunction: Implications for Parkinson's disease. European Journal of Neuroscience, 53(9), 2946-2959. https://doi.org/10.1111/ejn.14699.
Frey, B., Alokda, A., Jackson, M. P., Riguet, N., Duce, J. A., & Lashuel, H. A. (2021). Monitoring α-synuclein oligomerization and aggregation using bimolecular fluorescence complementation assays: What you see is not always what you get. Journal of Neurochemistry, 157(4), 872-888. https://doi.org/10.1111/jnc.15147.
Ganguly, U., Chakrabarti, S. S., Kaur, U., Mukherjee, A., & Chakrabarti, S. (2018). α-Synuclein, proteotoxicity and Parkinson's disease: Search for neuroprotective therapy. Current Neuropharmacology, 16, 1086-1097.
Gaur, P., Galkin, M., Kurochka, A., Ghosh, S., Yushchenko, D. A., & Shvadchak, V. V. (2021). Fluorescent probe for selective imaging of α-synuclein fibrils in living cells. ACS Chemical Neuroscience, 12, 1293-1298. https://doi.org/10.1021/acschemneuro.1c00090.
Hassink, G. C., Raiss, C. C., Segers-Nolten, I. M. J., van Wezel, R. J. A., Subramaniam, V., le Feber, J., & Claessens, M. (2018). Exogenous α-synuclein hinders synaptic communication in cultured cortical primary rat neurons. PLoS One, 13, e0193763. https://doi.org/10.1371/journal.pone.0193763.
Hijaz, B. A., & Volpicelli-Daley, L. A. (2020). Initiation and propagation of α-synuclein aggregation in the nervous system. Molecular Neurodegeneration, 15, 19. https://doi.org/10.1186/s13024-020-00368-6.
Jha, N. N., Kumar, R., Panigrahi, R., Navalkar, A., Ghosh, D., Sahay, S., Mondal, M., Kumar, A., & Maji, S. K. (2017). Comparison of α-synuclein fibril inhibition by four different amyloid inhibitors. ACS Chemical Neuroscience, 8, 2722-2733. https://doi.org/10.1021/acschemneuro.7b00261.
Jiang, P., Gan, M., Ebrahim, A. S., Lin, W. L., Melrose, H. L., & Yen, S. H. (2010). ER stress response plays an important role in aggregation of α-synuclein. Molecular Neurodegeneration, 5, 56. https://doi.org/10.1186/1750-1326-5-56.
Jo, H. Y., Kim, Y., Park, H. W., Moon, H. E., Bae, S., Kim, J., Kim, D. G., & Paek, S. H. (2015). The unreliability of MTT assay in the cytotoxic test of primary cultured glioblastoma cells. Experimental Neurobiology, 24, 235-245. https://doi.org/10.5607/en.2015.24.3.235.
Jucker, M., & Walker, L. C. (2018). Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nature Neuroscience, 21, 1341-1349. https://doi.org/10.1038/s41593-018-0238-6.
Kalia, L. V., & Kalia, S. K. (2015). α-Synuclein and Lewy pathology in Parkinson's disease. Current Opinion in Neurology, 28, 375-381. https://doi.org/10.1097/WCO.0000000000000215.
Kalia, L. V., & Lang, A. E. (2015). Parkinson's disease. Lancet, 386, 896-912. https://doi.org/10.1016/S0140-6736(14)61393-3.
Kumar, R., Kumari, R., Kumar, S., Jangir, D. K., & Maiti, T. K. (2018). Extracellular α-synuclein disrupts membrane nanostructure and promotes S-Nitrosylation-induced neuronal cell death. Biomacromolecules, 19, 1118-1129. https://doi.org/10.1021/acs.biomac.7b01727.
Kumar, S. T., Jagannath, S., Francois, C., Vanderstichele, H., Stoops, E., & Lashuel, H. A. (2020). How specific are the conformation-specific α-synuclein antibodies? Characterization and validation of 16 α-synuclein conformation-specific antibodies using well-characterized preparations of α-synuclein monomers, fibrils and oligomers with distinct structures and morphology. Neurobiology of Disease, 146, 105086. https://doi.org/10.1016/j.nbd.2020.105086.
Kurnik, M., Sahin, C., Andersen, C. B., Lorenzen, N., Giehm, L., Mohammad-Beigi, H., Jessen, C. M., Pedersen, J. S., Christiansen, G., Petersen, S. V., Staal, R., Krishnamurthy, G., Pitts, K., Reinhart, P. H., Mulder, F. A. A., Mente, S., Hirst, W. D., & Otzen, D. E. (2018). Potent α-synuclein aggregation inhibitors, identified by high-throughput screening, mainly target the monomeric state. Cell Chemical Biology, 25(1389-1402), e1389. https://doi.org/10.1016/j.chembiol.2018.08.005.
Kyriukha, Y. A., Afitska, K., Kurochka, A. S., Sachan, S., Galkin, M., Yushchenko, D. A., & Shvadchak, V. V. (2019). α-synuclein dimers as potent inhibitors of fibrillization. Journal of Medicinal Chemistry, 62, 10342-10351. https://doi.org/10.1021/acs.jmedchem.9b01400.
Lashuel, H. A. (2021). Alpha-Synuclein oligomerization and aggregation: All models are useful but only if we know what they model: This is the reply to a comment "Alpha-synuclein oligomerization and aggregation: A model will always be a model" on the original article "Monitoring alpha-synuclein oligomerization and aggregation using bimolecular fluorescence complementation assays: What you see is not always what you get". The articles are accompanied by a Preface "How good are cellular models?". Journal of Neurochemistry, 157, 891-898. https://doi.org/10.1111/jnc.15275.
Liang, Z., Chan, H. Y. E., Lee, M. M., & Chan, M. K. (2021). A SUMO1-derived peptide targeting SUMO-interacting motif inhibits α-synuclein aggregation. Cell. Chemical Biology, 28(2), 180-190. https://doi.org/10.1016/j.chembiol.2020.12.010.
Lu, L., Zhang, L., Wai, M. S., Yew, D. T., & Xu, J. (2012). Exocytosis of MTT formazan could exacerbate cell injury. Toxicology in Vitro, 26, 636-644. https://doi.org/10.1016/j.tiv.2012.02.006.
Miraglia, F., Valvano, V., Rota, L., Di Primio, C., Quercioli, V., Betti, L., Giannaccini, G., Cattaneo, A., & Colla, E. (2020). α-Synuclein FRET biosensors reveal early α-synuclein aggregation in the endoplasmic reticulum. Life, 10(8), 147. https://doi.org/10.3390/life10080147.
Myohanen, T. T., Hannula, M. J., Van Elzen, R., Gerard, M., Van Der Veken, P., Garcia-Horsman, J. A., Baekelandt, V., Mannisto, P. T., & Lambeir, A. M. (2012). A prolyl oligopeptidase inhibitor, KYP-2047, reduces α-synuclein protein levels and aggregates in cellular and animal models of Parkinson's disease. British Journal of Pharmacology, 166, 1097-1113. https://doi.org/10.1111/j.1476-5381.2012.01846.x.
Pantazopoulou, M., Brembati, V., Kanellidi, A., Bousset, L., Melki, R., & Stefanis, L. (2021). Distinct α-synuclein species induced by seeding are selectively cleared by the lysosome or the proteasome in neuronally differentiated SH-SY5Y cells. Journal of Neurochemistry, 156(6), 880-896. https://doi.org/10.1111/jnc.15174.
Perni, M., Flagmeier, P., Limbocker, R., Cascella, R., Aprile, F. A., Galvagnion, C., Heller, G. T., Meisl, G., Chen, S. W., Kumita, J. R., Challa, P. K., Kirkegaard, J. B., Cohen, S. I. A., Mannini, B., Barbut, D., Nollen, E. A. A., Cecchi, C., Cremades, N., Knowles, T. P. J., … Dobson, C. M. (2018). Multistep inhibition of α-synuclein aggregation and toxicity in vitro and in vivo by trodusquemine. ACS Chemical Biology, 13(8), 2308-2319. https://doi.org/10.1021/acschembio.8b00466.
Perrino, G., Wilson, C., Santorelli, M., & di Bernardo, D. (2019). Quantitative characterization of α-synuclein aggregation in living cells through automated microfluidics feedback control. Cell Reports, 27, 916-927.e915. https://doi.org/10.1016/j.celrep.2019.03.081.
Pinotsi, D., Michel, C. H., Buell, A. K., Laine, R. F., Mahou, P., Dobson, C. M., Kaminski, C. F., & Kaminski Schierle, G. S. (2016). Nanoscopic insights into seeding mechanisms and toxicity of α-synuclein species in neurons. Proceedings of the National Academy of Sciences, 113, 3815-3819. https://doi.org/10.1073/pnas.1516546113.
Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., & Nussbaum, R. L. (1997). Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science, 276, 2045-2047. https://doi.org/10.1126/science.276.5321.2045.
Presgraves, S. P., Ahmed, T., Borwege, S., & Joyce, J. N. (2004). Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotoxicity Research, 5, 579-598. https://doi.org/10.1007/BF03033178.
Priss, A., Afitska, K., Galkin, M., Yushchenko, D. A., & Shvadchak, V. V. (2021). Rationally designed protein-based inhibitor of α-synuclein fibrillization in cells. Journal of Medicinal Chemistry, 64, 6827-6837. https://doi.org/10.1021/acs.jmedchem.1c00086.
Pujols, J., Peña-Díaz, S., Lázaro, D. F., Peccati, F., Pinheiro, F., González, D., Carija, A., Navarro, S., Conde-Giménez, M., García, J., Guardiola, S., Giralt, E., Salvatella, X., Sancho, J., Sodupe, M., Outeiro, T. F., Dalfó, E., & Ventura, S. (2018). Small molecule inhibits α-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons. Proceedings of the National Academy of Sciences, 115(41), 10481-10486. https://doi.org/10.1073/pnas.1804198115
Rocha, E. M., Smith, G. A., Park, E., Cao, H., Brown, E., Hayes, M. A., Beagan, J., McLean, J. R., Izen, S. C., Perez-Torres, E., Hallett, P. J., & Isacson, O. (2015). Glucocerebrosidase gene therapy prevents α-synucleinopathy of midbrain dopamine neurons. Neurobiology of Diseases, 82, 495-503. https://doi.org/10.1016/j.nbd.2015.09.009.
Rönicke, R., Klemm, A., Meinhardt, J., Schröder, U. H., Fändrich, M., & Reymann, K. G. (2008). Aβ mediated diminution of MTT reduction - an artefact of single cell culture? PLoS One, 3(9), e3236. https://doi.org/10.1371/journal.pone.0003236.
Ruf, V. C., Nubling, G. S., Willikens, S., Shi, S., Schmidt, F., Levin, J., Botzel, K., Kamp, F., & Giese, A. (2019). Different effects of α-synuclein mutants on lipid binding and aggregation detected by single molecule fluorescence spectroscopy and ThT fluorescence-based measurements. ACS Chemical Neuroscience, 10, 1649-1659. https://doi.org/10.1021/acschemneuro.8b00579.
Sangwan, S., Sahay, S., Murray, K. A., Morgan, S., Guenther, E. L., Jiang, L., Williams, C. K., Vinters, H. V., Goedert, M., & Eisenberg, D. S. (2020). Inhibition of synucleinopathic seeding by rationally designed inhibitors. eLife, 9. https://doi.org/10.7554/elife.46775.
Shi, J., Ma, Y., Zhu, J., Chen, Y., Sun, Y., Yao, Y., Yang, Z., & Xie, J. (2018). A review on electroporation-based intracellular delivery. Molecules, 23, 3044. https://doi.org/10.3390/molecules23113044.
Shvadchak, V. V., Afitska, K., & Yushchenko, D. A. (2018). Inhibition of α-synuclein amyloid fibril elongation by blocking fibril ends. Angewandte Chemie (International Ed. in English), 57, 5690-5694. https://doi.org/10.1002/anie.201801071.
Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). α-synuclein in lewy bodies. Nature, 388, 839-840. https://doi.org/10.1038/42166.
Tanik, S. A., Schultheiss, C. E., Volpicelli-Daley, L. A., Brunden, K. R., & Lee, V. M. (2013). Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. Journal of Biological Chemistry, 288, 15194-15210. https://doi.org/10.1074/jbc.M113.457408.
Tysnes, O. B., & Storstein, A. (2017). Epidemiology of Parkinson's disease. Journal of Neural Transmission (Vienna), 124, 901-905. https://doi.org/10.1007/s00702-017-1686-y.
van Meerloo, J., Kaspers, G. J., & Cloos, J. (2011). Cell sensitivity assays: The MTT assay. Methods in Molecular Biology, 731, 237-245.
Vargas, J. Y., Grudina, C., & Zurzolo, C. (2019). The prion-like spreading of α-synuclein: From in vitro to in vivo models of Parkinson's disease. Ageing Research Reviews, 50, 89-101. https://doi.org/10.1016/j.arr.2019.01.012.
Vellonen, K. S., Honkakoski, P., & Urtti, A. (2004). Substrates and inhibitors of efflux proteins interfere with the MTT assay in cells and may lead to underestimation of drug toxicity. European Journal of Pharmaceutical Sciences, 23, 181-188. https://doi.org/10.1016/j.ejps.2004.07.006.
Volpicelli-Daley, L. A., Luk, K. C., & Lee, V. M. (2014). Addition of exogenous α-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous α-synuclein to Lewy body and Lewy neurite-like aggregates. Nature Protocols, 9, 2135-2146. https://doi.org/10.1038/nprot.2014.143.
Wagner, J., Ryazanov, S., Leonov, A., Levin, J., Shi, S., Schmidt, F., Prix, C., Pan-Montojo, F., Bertsch, U., Mitteregger-Kretzschmar, G., Geissen, M., Eiden, M., Leidel, F., Hirschberger, T., Deeg, A. A., Krauth, J. J., Zinth, W., Tavan, P., Pilger, J., … Giese, A. (2013). Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson's disease. Acta Neuropathologica, 125, 795-813. https://doi.org/10.1007/s00401-013-1114-9.
Watanabe, H., Ono, M., Ariyoshi, T., Katayanagi, R., & Saji, H. (2017). Novel benzothiazole derivatives as fluorescent probes for detection of β-amyloid and α-synuclein aggregates. ACS Chemical Neuroscience, 8, 1656-1662. https://doi.org/10.1021/acschemneuro.6b00450.
Wogulis, M., Wright, S., Cunningham, D., Chilcote, T., Powell, K., & Rydel, R. E. (2005). Nucleation-dependent polymerization is an essential component of amyloid-mediated neuronal cell death. Journal of Neuroscience, 25, 1071-1080. https://doi.org/10.1523/JNEUROSCI.2381-04.2005.
Wordehoff, M. M., Shaykhalishahi, H., Gross, L., Gremer, L., Stoldt, M., Buell, A. K., Willbold, D., & Hoyer, W. (2017). Opposed effects of dityrosine formation in soluble and aggregated α-synuclein on fibril growth. Journal of Molecular Biology, 429, 3018-3030. https://doi.org/10.1016/j.jmb.2017.09.005.
Xicoy, H., Wieringa, B., & Martens, G. J. (2017). The SH-SY5Y cell line in Parkinson's disease research: A systematic review. Molecular Neurodegeneration, 12, 10. https://doi.org/10.1186/s13024-017-0149-0.
Zheng, Y., Qu, J., Xue, F., Zheng, Y., Yang, B., Chang, Y., Yang, H., & Zhang, J. (2018). Novel DNA aptamers for Parkinson's Disease treatment inhibit α-synuclein aggregation and facilitate its degradation. Molecular Therapy-Nucleic Acids, 11, 228-242. https://doi.org/10.1016/j.omtn.2018.02.011.