Feasibility Evaluation of Metamaterial Microwave Sensors for Non-Invasive Blood Glucose Monitoring
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTC19031; SGS21/179/OHK4/3T/17
Ministry of Education, Youth and Sports of the Czech Republic; Student Grant Competition of CTU
PubMed
34696084
PubMed Central
PMC8541128
DOI
10.3390/s21206871
PII: s21206871
Knihovny.cz E-zdroje
- Klíčová slova
- dielectric properties, glucose monitoring, microwave sensor,
- MeSH
- krevní glukóza * MeSH
- lidé MeSH
- mikrovlny MeSH
- monitorování fyziologických funkcí MeSH
- selfmonitoring glykemie * MeSH
- studie proveditelnosti MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- krevní glukóza * MeSH
The use of microwave technology is currently under investigation for non-invasive estimation of glycemia in patients with diabetes. Due to their construction, metamaterial (MTM)-based sensors have the potential to provide higher sensitivity of the phase shift of the S21 parameter (∠S21) to changes in glucose concentration compared to standard microstrip transmission line (MSTL)-based sensors. In this study, a MSTL sensor and three MTM sensors with 5, 7, and 9 MTM unit cells are exposed to liquid phantoms with different dielectric properties mimicking a change in blood glucose concentration from 0 to 14 mmol/L. Numerical models were created for the individual experiments, and the calculated S-parameters show good agreement with experimental results, expressed by the maximum relative error of 8.89% and 0.96% at a frequency of 1.99 GHz for MSTL and MTM sensor with nine unit cells, respectively. MTM sensors with an increasing number of cells show higher sensitivity of 0.62° per mmol/L and unit cell to blood glucose concentration as measured by changes in ∠S21. In accordance with the numerical simulations, the MTM sensor with nine unit cells showed the highest sensitivity of the sensors proposed by us, with an average of 3.66° per mmol/L at a frequency of 1.99 GHz, compared to only 0.48° per mmol/L for the MSTL sensor. The multi-cell MTM sensor has the potential to proceed with evaluation of human blood samples.
Department of Radiation Oncology Thomas Jefferson University Philadelphia PA 19107 USA
Faculty of Biomedical Engineering Czech Technical University Prague 160 00 Prague Czech Republic
Zobrazit více v PubMed
Wilkinson I.B., Raine T., Wiles K., Goodhart A., Hall C., O’Neill H. Oxford Handbook of Clinical Medicine. 10th ed. OUP Oxford; Oxford, UK: 2017.
Siddiqui S.A., Zhang Y., Lloret J., Song H., Obradovic Z. Pain-Free Blood Glucose Monitoring Using Wearable Sensors: Recent Advancements and Future Prospects. IEEE Rev. Biomed. Eng. 2018;11:21–35. doi: 10.1109/RBME.2018.2822301. PubMed DOI
Lin X., Xu Y., Pan X., Xu J., Ding Y., Sun X., Song X., Ren Y., Shan P.-F. Global, Regional, and National Burden and Trend of Diabetes in 195 Countries and Territories: An Analysis from 1990 to 2025. Sci. Rep. 2020;10:14790. doi: 10.1038/s41598-020-71908-9. PubMed DOI PMC
Tasker R.C., Acerini C.L., Holloway E., Shah A., Lillitos P. Oxford Handbook of Paediatrics. 3rd ed. Oxford University Press; Oxford, UK: 2021.
Bruen D., Delaney C., Florea L., Diamond D. Glucose Sensing for Diabetes Monitoring: Recent Developments. Sensors. 2017;17:1866. doi: 10.3390/s17081866. PubMed DOI PMC
Tang L., Chang S.J., Chen C.-J., Liu J.-T. Non-Invasive Blood Glucose Monitoring Technology: A Review. Sensors. 2020;20:6925. doi: 10.3390/s20236925. PubMed DOI PMC
Jang C., Lee H.-J., Yook J.-G. Radio-Frequency Biosensors for Real-Time and Continuous Glucose Detection. Sensors. 2021;21:1843. doi: 10.3390/s21051843. PubMed DOI PMC
Yilmaz T., Foster R., Hao Y. Radio-Frequency and Microwave Techniques for Non-Invasive Measurement of Blood Glucose Levels. Diagnostics. 2019;9:6. doi: 10.3390/diagnostics9010006. PubMed DOI PMC
GlucoTrack®, Your Track to Health! Integrity Applications; Ashdod, Israel: 2021. DF-F.
CoG—Hybrid Glucometer|Cnoga Digital Care. [(accessed on 15 August 2021)]. Available online: https://www.cnogacare.co/cog-hybrid-glucometer.
Pleus S., Schauer S., Jendrike N., Zschornack E., Link M., Hepp K.D., Haug C., Freckmann G. Proof of Concept for a New Raman-Based Prototype for Noninvasive Glucose Monitoring. J. Diabetes Sci. Technol. 2021;15:11–18. doi: 10.1177/1932296820947112. PubMed DOI PMC
Lundsgaard-Nielsen S.M., Pors A., Banke S.O., Henriksen J.E., Hepp D.K., Weber A. Critical-Depth Raman Spectroscopy Enables Home-Use Non-Invasive Glucose Monitoring. PLoS ONE. 2018;13:e0197134. doi: 10.1371/journal.pone.0197134. PubMed DOI PMC
Gabriel C., Gabriel S., Corthout E. The Dielectric Properties of Biological Tissues: I. Literature Survey. Phys. Med. Biol. 1996;41:2231–2249. doi: 10.1088/0031-9155/41/11/001. PubMed DOI
Beam K., Venkataraman J. Phantom Models for In-Vitro Measurements of Blood Glucose; Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI); Spokane, WA, USA. 3–8 July 2011; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers; 2011. pp. 1860–1862.
Karacolak T., Moreland E.C., Topsakal E. Cole-Cole Model for Glucose-Dependent Dielectric Properties of Blood Plasma for Continuous Glucose Monitoring. Microw. Opt. Technol. Lett. 2013;55:1160–1164. doi: 10.1002/mop.27515. DOI
So C.-F., Choi K.-S., Wong T.K., Chung J.W. Recent Advances in Noninvasive Glucose Monitoring. Med. Devices Auckl. NZ. 2012;5:45–52. doi: 10.2147/MDER.S28134. PubMed DOI PMC
Hofmann M., Fischer G., Weigel R., Kissinger D. Microwave-Based Noninvasive Concentration Measurements for Biomedical Applications. IEEE Trans. Microw. Theory Tech. 2013;61:2195–2204. doi: 10.1109/TMTT.2013.2250516. DOI
Hayashi Y., Livshits L., Caduff A., Feldman Y. Dielectric Spectroscopy Study of Specific Glucose Influence on Human Erythrocyte Membranes. J. Phys. Appl. Phys. 2003;36:369. doi: 10.1088/0022-3727/36/4/307. DOI
Freer B., Venkataraman J. Feasibility Study for Non-Invasive Blood Glucose Monitoring; Proceedings of the 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI); Toronto, ON, Canada. 11–17 July 2010; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers; pp. 1–4.
Huang S., Omkar, Yoshida Y., Inda A., Chia X.X., Mu W.C., Meng Y., Yu W. Microstrip Line-Based Glucose Sensor for Noninvasive Continuous Monitoring Using the Main Field for Sensing and Multivariable Crosschecking. IEEE Sens. J. 2019;19:535–547. doi: 10.1109/JSEN.2018.2877691. DOI
Yilmaz T., Ozturk T., Joof S. A Comparative Study for Development of Microwave Glucose Sensors; Proceedings of the 32nd URSI General Assembly and Scientific Symposium (URSI GASS 2017); Montreal, QC, Canada. 19–26 August 2017; Ghent, Belgium: International Union of Radio Science (URSI); 2017.
Saleh G., Ateeq I.S., Al-Naib I. Glucose Level Sensing Using Single Asymmetric Split Ring Resonator. Sensors. 2021;21:2945. doi: 10.3390/s21092945. PubMed DOI PMC
Odabashyan L., Babajanyan A., Baghdasaryan Z., Kim S., Kim J., Friedman B., Lee J.-H., Lee K. Real-Time Noninvasive Measurement of Glucose Concentration Using a Modified Hilbert Shaped Microwave Sensor. Sensors. 2019;19:5525. doi: 10.3390/s19245525. PubMed DOI PMC
Kumar A., Wang C., Meng F.-Y., Zhou Z.-L., Zhao M., Yan G.-F., Kim E.-S., Kim N.-Y. High-Sensitivity, Quantified, Linear and Mediator-Free Resonator-Based Microwave Biosensor for Glucose Detection. Sensors. 2020;20:4024. doi: 10.3390/s20144024. PubMed DOI PMC
Camli B., Kusakci E., Lafçi B., Salman S., Torun H., Yalcinkaya A. Cost-Effective, Microstrip Antenna Driven Ring Resonator Microwave Biosensor for Biospecific Detection of Glucose. IEEE J. Sel. Top. Quantum Electron. 2017;23:404–409. doi: 10.1109/JSTQE.2017.2659226. DOI
Sidley M. Ph.D. Thesis. Rochester Institute of Technology; Rochester, NY, USA: 2013. Calibration for Real-Time Non-Invasive Blood Glucose Monitoring.
Omkar, Yu W., Huang S.Y. T-Shaped Patterned Microstrip Line for Noninvasive Continuous Glucose Sensing. IEEE Microw. Wirel. Compon. Lett. 2018;28:942–944. doi: 10.1109/LMWC.2018.2861565. DOI
Zeising S., Kirchner J., Khalili H.F., Ahmed D., Lübke M., Thalmayer A., Fischer G. Towards Realisation of a Non-Invasive Blood Glucose Sensor Using Microstripline. TechRxiv. 2021 doi: 10.36227/techrxiv.13553528.v1. preprint. DOI
Vrba J., Vrba D. A Microwave Metamaterial Inspired Sensor for Non-Invasive Blood Glucose Monitoring. Radioengineering. 2015;24:877–884. doi: 10.13164/re.2015.0877. DOI
Pozar D.M. Microwave Engineering. 2nd ed. John Wiley and Sons; New York, NY, USA: 1998.
Damm C., Schussler M., Puentes M., Maune H., Maasch M., Jakoby R. Artificial Transmission Lines for High Sensitive Microwave Sensors; Proceedings of the 2009 IEEE Sensors; Christchurch, New Zealand. 25–28 October 2009; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers; 2009. pp. 755–758.
Vrba J., Vrba D., Díaz L., Fišer O. Metamaterial Sensor for Microwave Non-invasive Blood Glucose Monitoring. [(accessed on 25 June 2021)]. Available online: https://www.springerprofessional.de/metamaterial-sensor-for-microwave-non-invasive-blood-glucose-mon/15802180.
Yilmaz T., Foster R., Hao Y. Broadband Tissue Mimicking Phantoms and a Patch Resonator for Evaluating Noninvasive Monitoring of Blood Glucose Levels. IEEE Trans. Antennas Propag. 2014;62:3064–3075. doi: 10.1109/TAP.2014.2313139. DOI
Adhyapak A., Sidley M., Venkataraman J. Analytical Model for Real Time, Noninvasive Estimation of Blood Glucose Level; Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC 2014; Chicago, IL, USA. 26–30 August 2014; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers; 2014. pp. 5020–5023. PubMed
DAK » SPEAG, Schmid & Partner Engineering AG. [(accessed on 15 August 2021)]. Available online: https://speag.swiss/products/dak/dak-probes/
R&S®ZNB Vector Network Analyzer. [(accessed on 15 August 2021)]. Available online: https://www.rohde-schwarz.com/pl/products/test-and-measurement/network-analyzers/rs-znb-vector-network-analyzer_63493-11648.html.
Tyrrell J.A. Lectures on curves on an algebraic surface: A book review. J. Lond. Math. Soc. 1968;s1-43:570–571. doi: 10.1112/jlms/s1-43.1.570b. DOI
Ro4000-Laminates-Ro4003c-and-Ro4350b-Data-Sheet. Rogers Corporation; Shanghai, China: 2018.
I-Tera Mt40 Data Sheet. Isola Group; Chandler, AZ, USA: 2017.
PLA—Prusa Research. [(accessed on 15 August 2021)]. Available online: https://shop.prusa3d.com/en/21-pla.
COMSOL . Multiphysics Reference Manual 2019. COMSOL Inc.; Burlington, MA, USA: 2019.
Pham H. A New Criterion for Model Selection. Mathematics. 2019;7:1215. doi: 10.3390/math7121215. DOI
Hasgall P.A., di Gennaro F., Baumgartner C., Neufeld E., Lloyd B., Gosselin M.C., Payne D., Klingenboeck A., Kuster N. Tissue Properties Database V4.0 2018. IT’IS Foundation; Zurich, Switzerland: 2018.