Feasibility Evaluation of Metamaterial Microwave Sensors for Non-Invasive Blood Glucose Monitoring

. 2021 Oct 16 ; 21 (20) : . [epub] 20211016

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34696084

Grantová podpora
LTC19031; SGS21/179/OHK4/3T/17 Ministry of Education, Youth and Sports of the Czech Republic; Student Grant Competition of CTU

The use of microwave technology is currently under investigation for non-invasive estimation of glycemia in patients with diabetes. Due to their construction, metamaterial (MTM)-based sensors have the potential to provide higher sensitivity of the phase shift of the S21 parameter (∠S21) to changes in glucose concentration compared to standard microstrip transmission line (MSTL)-based sensors. In this study, a MSTL sensor and three MTM sensors with 5, 7, and 9 MTM unit cells are exposed to liquid phantoms with different dielectric properties mimicking a change in blood glucose concentration from 0 to 14 mmol/L. Numerical models were created for the individual experiments, and the calculated S-parameters show good agreement with experimental results, expressed by the maximum relative error of 8.89% and 0.96% at a frequency of 1.99 GHz for MSTL and MTM sensor with nine unit cells, respectively. MTM sensors with an increasing number of cells show higher sensitivity of 0.62° per mmol/L and unit cell to blood glucose concentration as measured by changes in ∠S21. In accordance with the numerical simulations, the MTM sensor with nine unit cells showed the highest sensitivity of the sensors proposed by us, with an average of 3.66° per mmol/L at a frequency of 1.99 GHz, compared to only 0.48° per mmol/L for the MSTL sensor. The multi-cell MTM sensor has the potential to proceed with evaluation of human blood samples.

Zobrazit více v PubMed

Wilkinson I.B., Raine T., Wiles K., Goodhart A., Hall C., O’Neill H. Oxford Handbook of Clinical Medicine. 10th ed. OUP Oxford; Oxford, UK: 2017.

Siddiqui S.A., Zhang Y., Lloret J., Song H., Obradovic Z. Pain-Free Blood Glucose Monitoring Using Wearable Sensors: Recent Advancements and Future Prospects. IEEE Rev. Biomed. Eng. 2018;11:21–35. doi: 10.1109/RBME.2018.2822301. PubMed DOI

Lin X., Xu Y., Pan X., Xu J., Ding Y., Sun X., Song X., Ren Y., Shan P.-F. Global, Regional, and National Burden and Trend of Diabetes in 195 Countries and Territories: An Analysis from 1990 to 2025. Sci. Rep. 2020;10:14790. doi: 10.1038/s41598-020-71908-9. PubMed DOI PMC

Tasker R.C., Acerini C.L., Holloway E., Shah A., Lillitos P. Oxford Handbook of Paediatrics. 3rd ed. Oxford University Press; Oxford, UK: 2021.

Bruen D., Delaney C., Florea L., Diamond D. Glucose Sensing for Diabetes Monitoring: Recent Developments. Sensors. 2017;17:1866. doi: 10.3390/s17081866. PubMed DOI PMC

Tang L., Chang S.J., Chen C.-J., Liu J.-T. Non-Invasive Blood Glucose Monitoring Technology: A Review. Sensors. 2020;20:6925. doi: 10.3390/s20236925. PubMed DOI PMC

Jang C., Lee H.-J., Yook J.-G. Radio-Frequency Biosensors for Real-Time and Continuous Glucose Detection. Sensors. 2021;21:1843. doi: 10.3390/s21051843. PubMed DOI PMC

Yilmaz T., Foster R., Hao Y. Radio-Frequency and Microwave Techniques for Non-Invasive Measurement of Blood Glucose Levels. Diagnostics. 2019;9:6. doi: 10.3390/diagnostics9010006. PubMed DOI PMC

GlucoTrack®, Your Track to Health! Integrity Applications; Ashdod, Israel: 2021. DF-F.

CoG—Hybrid Glucometer|Cnoga Digital Care. [(accessed on 15 August 2021)]. Available online: https://www.cnogacare.co/cog-hybrid-glucometer.

Pleus S., Schauer S., Jendrike N., Zschornack E., Link M., Hepp K.D., Haug C., Freckmann G. Proof of Concept for a New Raman-Based Prototype for Noninvasive Glucose Monitoring. J. Diabetes Sci. Technol. 2021;15:11–18. doi: 10.1177/1932296820947112. PubMed DOI PMC

Lundsgaard-Nielsen S.M., Pors A., Banke S.O., Henriksen J.E., Hepp D.K., Weber A. Critical-Depth Raman Spectroscopy Enables Home-Use Non-Invasive Glucose Monitoring. PLoS ONE. 2018;13:e0197134. doi: 10.1371/journal.pone.0197134. PubMed DOI PMC

Gabriel C., Gabriel S., Corthout E. The Dielectric Properties of Biological Tissues: I. Literature Survey. Phys. Med. Biol. 1996;41:2231–2249. doi: 10.1088/0031-9155/41/11/001. PubMed DOI

Beam K., Venkataraman J. Phantom Models for In-Vitro Measurements of Blood Glucose; Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI); Spokane, WA, USA. 3–8 July 2011; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers; 2011. pp. 1860–1862.

Karacolak T., Moreland E.C., Topsakal E. Cole-Cole Model for Glucose-Dependent Dielectric Properties of Blood Plasma for Continuous Glucose Monitoring. Microw. Opt. Technol. Lett. 2013;55:1160–1164. doi: 10.1002/mop.27515. DOI

So C.-F., Choi K.-S., Wong T.K., Chung J.W. Recent Advances in Noninvasive Glucose Monitoring. Med. Devices Auckl. NZ. 2012;5:45–52. doi: 10.2147/MDER.S28134. PubMed DOI PMC

Hofmann M., Fischer G., Weigel R., Kissinger D. Microwave-Based Noninvasive Concentration Measurements for Biomedical Applications. IEEE Trans. Microw. Theory Tech. 2013;61:2195–2204. doi: 10.1109/TMTT.2013.2250516. DOI

Hayashi Y., Livshits L., Caduff A., Feldman Y. Dielectric Spectroscopy Study of Specific Glucose Influence on Human Erythrocyte Membranes. J. Phys. Appl. Phys. 2003;36:369. doi: 10.1088/0022-3727/36/4/307. DOI

Freer B., Venkataraman J. Feasibility Study for Non-Invasive Blood Glucose Monitoring; Proceedings of the 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI); Toronto, ON, Canada. 11–17 July 2010; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers; pp. 1–4.

Huang S., Omkar, Yoshida Y., Inda A., Chia X.X., Mu W.C., Meng Y., Yu W. Microstrip Line-Based Glucose Sensor for Noninvasive Continuous Monitoring Using the Main Field for Sensing and Multivariable Crosschecking. IEEE Sens. J. 2019;19:535–547. doi: 10.1109/JSEN.2018.2877691. DOI

Yilmaz T., Ozturk T., Joof S. A Comparative Study for Development of Microwave Glucose Sensors; Proceedings of the 32nd URSI General Assembly and Scientific Symposium (URSI GASS 2017); Montreal, QC, Canada. 19–26 August 2017; Ghent, Belgium: International Union of Radio Science (URSI); 2017.

Saleh G., Ateeq I.S., Al-Naib I. Glucose Level Sensing Using Single Asymmetric Split Ring Resonator. Sensors. 2021;21:2945. doi: 10.3390/s21092945. PubMed DOI PMC

Odabashyan L., Babajanyan A., Baghdasaryan Z., Kim S., Kim J., Friedman B., Lee J.-H., Lee K. Real-Time Noninvasive Measurement of Glucose Concentration Using a Modified Hilbert Shaped Microwave Sensor. Sensors. 2019;19:5525. doi: 10.3390/s19245525. PubMed DOI PMC

Kumar A., Wang C., Meng F.-Y., Zhou Z.-L., Zhao M., Yan G.-F., Kim E.-S., Kim N.-Y. High-Sensitivity, Quantified, Linear and Mediator-Free Resonator-Based Microwave Biosensor for Glucose Detection. Sensors. 2020;20:4024. doi: 10.3390/s20144024. PubMed DOI PMC

Camli B., Kusakci E., Lafçi B., Salman S., Torun H., Yalcinkaya A. Cost-Effective, Microstrip Antenna Driven Ring Resonator Microwave Biosensor for Biospecific Detection of Glucose. IEEE J. Sel. Top. Quantum Electron. 2017;23:404–409. doi: 10.1109/JSTQE.2017.2659226. DOI

Sidley M. Ph.D. Thesis. Rochester Institute of Technology; Rochester, NY, USA: 2013. Calibration for Real-Time Non-Invasive Blood Glucose Monitoring.

Omkar, Yu W., Huang S.Y. T-Shaped Patterned Microstrip Line for Noninvasive Continuous Glucose Sensing. IEEE Microw. Wirel. Compon. Lett. 2018;28:942–944. doi: 10.1109/LMWC.2018.2861565. DOI

Zeising S., Kirchner J., Khalili H.F., Ahmed D., Lübke M., Thalmayer A., Fischer G. Towards Realisation of a Non-Invasive Blood Glucose Sensor Using Microstripline. TechRxiv. 2021 doi: 10.36227/techrxiv.13553528.v1. preprint. DOI

Vrba J., Vrba D. A Microwave Metamaterial Inspired Sensor for Non-Invasive Blood Glucose Monitoring. Radioengineering. 2015;24:877–884. doi: 10.13164/re.2015.0877. DOI

Pozar D.M. Microwave Engineering. 2nd ed. John Wiley and Sons; New York, NY, USA: 1998.

Damm C., Schussler M., Puentes M., Maune H., Maasch M., Jakoby R. Artificial Transmission Lines for High Sensitive Microwave Sensors; Proceedings of the 2009 IEEE Sensors; Christchurch, New Zealand. 25–28 October 2009; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers; 2009. pp. 755–758.

Vrba J., Vrba D., Díaz L., Fišer O. Metamaterial Sensor for Microwave Non-invasive Blood Glucose Monitoring. [(accessed on 25 June 2021)]. Available online: https://www.springerprofessional.de/metamaterial-sensor-for-microwave-non-invasive-blood-glucose-mon/15802180.

Yilmaz T., Foster R., Hao Y. Broadband Tissue Mimicking Phantoms and a Patch Resonator for Evaluating Noninvasive Monitoring of Blood Glucose Levels. IEEE Trans. Antennas Propag. 2014;62:3064–3075. doi: 10.1109/TAP.2014.2313139. DOI

Adhyapak A., Sidley M., Venkataraman J. Analytical Model for Real Time, Noninvasive Estimation of Blood Glucose Level; Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC 2014; Chicago, IL, USA. 26–30 August 2014; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers; 2014. pp. 5020–5023. PubMed

DAK » SPEAG, Schmid & Partner Engineering AG. [(accessed on 15 August 2021)]. Available online: https://speag.swiss/products/dak/dak-probes/

R&S®ZNB Vector Network Analyzer. [(accessed on 15 August 2021)]. Available online: https://www.rohde-schwarz.com/pl/products/test-and-measurement/network-analyzers/rs-znb-vector-network-analyzer_63493-11648.html.

Tyrrell J.A. Lectures on curves on an algebraic surface: A book review. J. Lond. Math. Soc. 1968;s1-43:570–571. doi: 10.1112/jlms/s1-43.1.570b. DOI

Ro4000-Laminates-Ro4003c-and-Ro4350b-Data-Sheet. Rogers Corporation; Shanghai, China: 2018.

I-Tera Mt40 Data Sheet. Isola Group; Chandler, AZ, USA: 2017.

PLA—Prusa Research. [(accessed on 15 August 2021)]. Available online: https://shop.prusa3d.com/en/21-pla.

COMSOL . Multiphysics Reference Manual 2019. COMSOL Inc.; Burlington, MA, USA: 2019.

Pham H. A New Criterion for Model Selection. Mathematics. 2019;7:1215. doi: 10.3390/math7121215. DOI

Hasgall P.A., di Gennaro F., Baumgartner C., Neufeld E., Lloyd B., Gosselin M.C., Payne D., Klingenboeck A., Kuster N. Tissue Properties Database V4.0 2018. IT’IS Foundation; Zurich, Switzerland: 2018.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...