Vaccinia Virus Expressing Interferon Regulatory Factor 3 Induces Higher Protective Immune Responses against Lethal Poxvirus Challenge in Atopic Organism
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34696416
PubMed Central
PMC8539567
DOI
10.3390/v13101986
PII: v13101986
Knihovny.cz E-resources
- Keywords
- IRF-3, Nc/Nga mice, atopic dermatitis, cytokines, eczema vaccinatum, immunization, interferon beta, interleukin-1 beta, smallpox, vaccinia virus,
- MeSH
- Gene Expression genetics MeSH
- Immunity immunology MeSH
- Poxviridae Infections immunology prevention & control MeSH
- Interferon Type I metabolism MeSH
- Interferon Regulatory Factor-3 genetics immunology MeSH
- Interleukin-1beta immunology MeSH
- Skin immunology MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Poxviridae pathogenicity MeSH
- Gene Expression Regulation, Viral genetics MeSH
- Virus Replication immunology MeSH
- Vaccinia virology MeSH
- Viral Vaccines immunology MeSH
- Vaccinia virus genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Interferon Type I MeSH
- Interferon Regulatory Factor-3 MeSH
- Interleukin-1beta MeSH
- Viral Vaccines MeSH
Vaccinia virus (VACV) is an enveloped DNA virus from the Orthopoxvirus family, various strains of which were used in the successful eradication campaign against smallpox. Both original and newer VACV-based replicating vaccines reveal a risk of serious complications in atopic individuals. VACV encodes various factors interfering with host immune responses at multiple levels. In atopic skin, the production of type I interferon is compromised, while VACV specifically inhibits the phosphorylation of the Interferon Regulatory Factor 3 (IRF-3) and expression of interferons. To overcome this block, we generated a recombinant VACV-expressing murine IRF-3 (WR-IRF3) and characterized its effects on virus growth, cytokine expression and apoptosis in tissue cultures and in spontaneously atopic Nc/Nga and control Balb/c mice. Further, we explored the induction of protective immune responses against a lethal dose of wild-type WR, the surrogate of smallpox. We demonstrate that the overexpression of IRF-3 by WR-IRF3 increases the expression of type I interferon, modulates the expression of several cytokines and induces superior protective immune responses against a lethal poxvirus challenge in both Nc/Nga and Balb/c mice. Additionally, the results may be informative for design of other virus-based vaccines or for therapy of different viral infections.
See more in PubMed
Artenstein A.W. New generation smallpox vaccines: A review of preclinical and clinical data. Rev. Med. Virol. 2008;18:217–231. doi: 10.1002/rmv.571. PubMed DOI
Jacobs B.L., Langland J.O., Kibler K.V., Denzler K.L., White S.D., Holechek S.A., Wong S., Huynh T., Baskin C.R. Vaccinia virus vaccines: Past, present and future. Antiviral Res. 2009;84:1–13. doi: 10.1016/j.antiviral.2009.06.006. PubMed DOI PMC
Engler R.J., Kenner J., Leung D.Y. Smallpox vaccination: Risk considerations for patients with atopic dermatitis. J. Allergy Clin. Immunol. 2002;110:357–365. doi: 10.1067/mai.2002.128052. PubMed DOI
Knitlova J., Hajkova V., Voska L., Elsterova J., Obrova B., Melkova Z. Development of eczema vaccinatum in atopic mouse models and efficacy of MVA vaccination against lethal poxviral infection. PLoS ONE. 2014;9:e114374. doi: 10.1371/journal.pone.0114374. PubMed DOI PMC
Werfel T., Allam J.P., Biedermann T., Eyerich K., Gilles S., Guttman-Yassky E., Hoetzenecker W., Knol E., Simon H.U., Wollenberg A., et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2016;138:336–349. doi: 10.1016/j.jaci.2016.06.010. PubMed DOI
Mansouri Y., Guttman-Yassky E. Immune Pathways in Atopic Dermatitis, and Definition of Biomarkers through Broad and Targeted Therapeutics. J. Clin. Med. 2015;4:858–873. doi: 10.3390/jcm4050858. PubMed DOI PMC
Wollenberg A., Wagner M., Gunther S., Towarowski A., Tuma E., Moderer M., Rothenfusser S., Wetzel S., Endres S., Hartmann G. Plasmacytoid dendritic cells: A new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J. Investig. Dermatol. 2002;119:1096–1102. doi: 10.1046/j.1523-1747.2002.19515.x. PubMed DOI
Kawakami Y., Tomimori Y., Yumoto K., Hasegawa S., Ando T., Tagaya Y., Crotty S., Kawakami T. Inhibition of NK cell activity by IL-17 allows vaccinia virus to induce severe skin lesions in a mouse model of eczema vaccinatum. J. Exp. Med. 2009;206:1219–1225. doi: 10.1084/jem.20082835. PubMed DOI PMC
Howell M.D., Wollenberg A., Gallo R.L., Flaig M., Streib J.E., Wong C., Pavicic T., Boguniewicz M., Leung D.Y. Cathelicidin deficiency predisposes to eczema herpeticum. J. Allergy Clin. Immunol. 2006;117:836–841. doi: 10.1016/j.jaci.2005.12.1345. PubMed DOI PMC
Howell M.D., Gallo R.L., Boguniewicz M., Jones J.F., Wong C., Streib J.E., Leung D.Y. Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity. 2006;24:341–348. doi: 10.1016/j.immuni.2006.02.006. PubMed DOI
Ou L.S., Goleva E., Hall C., Leung D.Y. T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. J. Allergy Clin. Immunol. 2004;113:756–763. doi: 10.1016/j.jaci.2004.01.772. PubMed DOI
Kohara Y., Tanabe K., Matsuoka K., Kanda N., Matsuda H., Karasuyama H., Yonekawa H. A major determinant quantitative-trait locus responsible for atopic dermatitis-like skin lesions in NC/Nga mice is located on Chromosome 9. Immunogenetics. 2001;53:15–21. doi: 10.1007/s002510000286. PubMed DOI
Suto H., Matsuda H., Mitsuishi K., Hira K., Uchida T., Unno T., Ogawa H., Ra C. NC/Nga mice: A mouse model for atopic dermatitis. Int. Arch. Allergy Immunol. 1999;120((Suppl. 1)):70–75. doi: 10.1159/000053599. PubMed DOI
Smith G.L., Benfield C.T.O., Maluquer de Motes C., Mazzon M., Ember S.W.J., Ferguson B.J., Sumner R.P. Vaccinia virus immune evasion: Mechanisms, virulence and immunogenicity. J. Gen. Virol. 2013;94:2367–2392. doi: 10.1099/vir.0.055921-0. PubMed DOI
Smith G.L., Talbot-Cooper C., Lu Y. How Does Vaccinia Virus Interfere With Interferon? Adv. Virus Res. 2018;100:355–378. doi: 10.1016/bs.aivir.2018.01.003. PubMed DOI
Unterholzner L., Sumner R.P., Baran M., Ren H., Mansur D.S., Bourke N.M., Randow F., Smith G.L., Bowie A.G. Vaccinia virus protein C6 is a virulence factor that binds TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7. PLoS Pathog. 2011;7:e1002247. doi: 10.1371/journal.ppat.1002247. PubMed DOI PMC
Ferguson B.J., Benfield C.T.O., Ren H., Lee V.H., Frazer G.L., Strnadova P., Sumner R.P., Smith G.L. Vaccinia virus protein N2 is a nuclear IRF3 inhibitor that promotes virulence. J. Gen. Virol. 2013;94:2070–2081. doi: 10.1099/vir.0.054114-0. PubMed DOI PMC
Liskova J., Knitlova J., Honner R., Melkova Z. Apoptosis and necrosis in vaccinia virus-infected HeLa G and BSC-40 cells. Virus Res. 2011;160:40–50. doi: 10.1016/j.virusres.2011.05.005. PubMed DOI
Benfield C.T.O., Ren H., Lucas S.J., Bahsoun B., Smith G.L. Vaccinia virus protein K7 is a virulence factor that alters the acute immune response to infection. J. Gen. Virol. 2013;94:1647–1657. doi: 10.1099/vir.0.052670-0. PubMed DOI PMC
Mansur D.S., Maluquer de Motes C., Unterholzner L., Sumner R.P., Ferguson B.J., Ren H., Strnadova P., Bowie A.G., Smith G.L. Poxvirus targeting of E3 ligase beta-TrCP by molecular mimicry: A mechanism to inhibit NF-kappaB activation and promote immune evasion and virulence. PLoS Pathog. 2013;9:e1003183. doi: 10.1371/journal.ppat.1003183. PubMed DOI PMC
Kalbacova M., Spisakova M., Liskova J., Melkova Z. Lytic infection with vaccinia virus activates caspases in a Bcl-2-inhibitable manner. Virus Res. 2008;135:53–63. doi: 10.1016/j.virusres.2008.02.007. PubMed DOI
Melkova Z., Esteban M. Interferon-gamma severely inhibits DNA synthesis of vaccinia virus in a macrophage cell line. Virology. 1994;198:731–735. doi: 10.1006/viro.1994.1087. PubMed DOI
Kalbacova M., Vrbacky M., Humlova Z., Melkova Z. Protooncogene Bcl-2 induces apoptosis in several cell lines. Folia Biol. (Praha) 2002;48:15–27. PubMed
Rodriguez J.F., Rodriguez D., Rodriguez J.R., McGowan E.B., Esteban M. Expression of the firefly luciferase gene in vaccinia virus: A highly sensitive gene marker to follow virus dissemination in tissues of infected animals. Proc. Natl. Acad. Sci. USA. 1988;85:1667–1671. doi: 10.1073/pnas.85.5.1667. PubMed DOI PMC
Mackett M., Smith G.L., Moss B. General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J. Virol. 1984;49:857–864. doi: 10.1128/jvi.49.3.857-864.1984. PubMed DOI PMC
Spisakova M., Cizek Z., Melkova Z. Ethacrynic and alpha-lipoic acids inhibit vaccinia virus late gene expression. Antiviral Res. 2009;81:156–165. doi: 10.1016/j.antiviral.2008.11.001. PubMed DOI PMC
Joklik W.K. The preparation and characteristics of highly purified radioactively labelled poxvirus. Biochim. Biophys Acta. 1962;61:290–301. doi: 10.1016/0926-6550(62)90091-9. PubMed DOI
Castellaneta A., Yoshida O., Kimura S., Yokota S., Geller D.A., Murase N., Thomson A.W. Plasmacytoid dendritic cell-derived IFN-alpha promotes murine liver ischemia/reperfusion injury by induction of hepatocyte IRF-1. Hepatology. 2014;60:267–277. doi: 10.1002/hep.27037. PubMed DOI PMC
Cogswell J.P., Godlevski M.M., Wisely G.B., Clay W.C., Leesnitzer L.M., Ways J.P., Gray J.G. NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J. Immunol. 1994;153:712–723. PubMed
Chattopadhyay S., Marques J.T., Yamashita M., Peters K.L., Smith K., Desai A., Williams B.R., Sen G.C. Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO J. 2010;29:1762–1773. doi: 10.1038/emboj.2010.50. PubMed DOI PMC
Gherardi M.M., Ramirez J.C., Rodriguez D., Rodriguez J.R., Sano G., Zavala F., Esteban M. IL-12 delivery from recombinant vaccinia virus attenuates the vector and enhances the cellular immune response against HIV-1 Env in a dose-dependent manner. J. Immunol. 1999;162:6724–6733. PubMed
von Sonnenburg F., Perona P., Darsow U., Ring J., von Krempelhuber A., Vollmar J., Roesch S., Baedeker N., Kollaritsch H., Chaplin P. Safety and immunogenicity of modified vaccinia Ankara as a smallpox vaccine in people with atopic dermatitis. Vaccine. 2014;32:5696–5702. doi: 10.1016/j.vaccine.2014.08.022. PubMed DOI
Greenberg R.N., Hurley M.Y., Dinh D.V., Mraz S., Vera J.G., von Bredow D., von Krempelhuber A., Roesch S., Virgin G., Arndtz-Wiedemann N., et al. A Multicenter, Open-Label, Controlled Phase II Study to Evaluate Safety and Immunogenicity of MVA Smallpox Vaccine (IMVAMUNE) in 18-40 Year Old Subjects with Diagnosed Atopic Dermatitis. PLoS ONE. 2015;10:e0138348. doi: 10.1371/journal.pone.0138348. PubMed DOI PMC
Pittman P.R., Hahn M., Lee H.S., Koca C., Samy N., Schmidt D., Hornung J., Weidenthaler H., Heery C.R., Meyer T.P.H., et al. Phase 3 Efficacy Trial of Modified Vaccinia Ankara as a Vaccine against Smallpox. N. Engl. J. Med. 2019;381:1897–1908. doi: 10.1056/NEJMoa1817307. PubMed DOI
Yokote H., Shinmura Y., Kanehara T., Maruno S., Kuranaga M., Matsui H., Hashizume S. Safety of attenuated smallpox vaccine LC16m8 in immunodeficient mice. Clin. Vaccine Immunol. 2014;21:1261–1266. doi: 10.1128/CVI.00199-14. PubMed DOI PMC
Danon Y.L., Sutter G. Use of the LC16m8 Smallpox Vaccine in Immunocompromised Individuals Is Still Too Risky. Clin. Vaccine Immunol. 2015;22:604. doi: 10.1128/CVI.00782-14. PubMed DOI PMC
Ahn J., Barber G.N. STING signaling and host defense against microbial infection. Exp. Mol. Med. 2019;51:1–10. doi: 10.1038/s12276-019-0333-0. PubMed DOI PMC
Ni G., Ma Z., Damania B. cGAS and STING: At the intersection of DNA and RNA virus-sensing networks. PLoS Pathog. 2018;14:e1007148. doi: 10.1371/journal.ppat.1007148. PubMed DOI PMC
Glanz A., Chakravarty S., Varghese M., Kottapalli A., Fan S., Chakravarti R., Chattopadhyay S. Transcriptional and Non-Transcriptional Activation, Posttranslational Modifications, and Antiviral Functions of Interferon Regulatory Factor 3 and Viral Antagonism by the SARS-Coronavirus. Viruses. 2021;13:575. doi: 10.3390/v13040575. PubMed DOI PMC
Servant M.J., ten Oever B., LePage C., Conti L., Gessani S., Julkunen I., Lin R., Hiscott J. Identification of distinct signaling pathways leading to the phosphorylation of interferon regulatory factor 3. J. Biol. Chem. 2001;276:355–363. doi: 10.1074/jbc.M007790200. PubMed DOI
Reed J.L., Scott D.E., Bray M. Eczema vaccinatum. Clin. Infect. Dis. 2012;54:832–840. doi: 10.1093/cid/cir952. PubMed DOI
Thanos D., Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell. 1995;83:1091–1100. doi: 10.1016/0092-8674(95)90136-1. PubMed DOI
Panne D., Maniatis T., Harrison S.C. An atomic model of the interferon-beta enhanceosome. Cell. 2007;129:1111–1123. doi: 10.1016/j.cell.2007.05.019. PubMed DOI PMC
Garoufalis E., Kwan I., Lin R., Mustafa A., Pepin N., Roulston A., Lacoste J., Hiscott J. Viral induction of the human beta interferon promoter: Modulation of transcription by NF-kappa B/rel proteins and interferon regulatory factors. J. Virol. 1994;68:4707–4715. doi: 10.1128/jvi.68.8.4707-4715.1994. PubMed DOI PMC
Roth S., Rottach A., Lotz-Havla A.S., Laux V., Muschaweckh A., Gersting S.W., Muntau A.C., Hopfner K.P., Jin L., Vanness K., et al. Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1beta production. Nat. Immunol. 2014;15:538–545. doi: 10.1038/ni.2888. PubMed DOI PMC
Aarreberg L.D., Wilkins C., Ramos H.J., Green R., Davis M.A., Chow K., Gale M., Jr. Interleukin-1beta Signaling in Dendritic Cells Induces Antiviral Interferon Responses. mBio. 2018;9 doi: 10.1128/mBio.00342-18. PubMed DOI PMC
Abe T., Barber G.N. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1. J. Virol. 2014;88:5328–5341. doi: 10.1128/JVI.00037-14. PubMed DOI PMC
Yum S., Li M., Fang Y., Chen Z.J. TBK1 recruitment to STING activates both IRF3 and NF-kappaB that mediate immune defense against tumors and viral infections. Proc. Natl. Acad. Sci. USA. 2021;118 doi: 10.1073/pnas.2100225118. PubMed DOI PMC
Fang R., Wang C., Jiang Q., Lv M., Gao P., Yu X., Mu P., Zhang R., Bi S., Feng J.M., et al. NEMO-IKKbeta Are Essential for IRF3 and NF-kappaB Activation in the cGAS-STING Pathway. J. Immunol. 2017;199:3222–3233. doi: 10.4049/jimmunol.1700699. PubMed DOI
Guarda G., Braun M., Staehli F., Tardivel A., Mattmann C., Forster I., Farlik M., Decker T., Du Pasquier R.A., Romero P., et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity. 2011;34:213–223. doi: 10.1016/j.immuni.2011.02.006. PubMed DOI
Castiglia V., Piersigilli A., Ebner F., Janos M., Goldmann O., Dambock U., Kroger A., Weiss S., Knapp S., Jamieson A.M., et al. Type I Interferon Signaling Prevents IL-1beta-Driven Lethal Systemic Hyperinflammation during Invasive Bacterial Infection of Soft Tissue. Cell Host Microbe. 2016;19:375–387. doi: 10.1016/j.chom.2016.02.003. PubMed DOI
Tarassishin L., Loudig O., Bauman A., Shafit-Zagardo B., Suh H.S., Lee S.C. Interferon regulatory factor 3 inhibits astrocyte inflammatory gene expression through suppression of the proinflammatory miR-155 and miR-155*. Glia. 2011;59:1911–1922. doi: 10.1002/glia.21233. PubMed DOI PMC
Kettle S., Alcami A., Khanna A., Ehret R., Jassoy C., Smith G.L. Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1beta-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1beta-induced fever. Pt 3J. Gen. Virol. 1997;78:677–685. doi: 10.1099/0022-1317-78-3-677. PubMed DOI
Lopez-Castejon G., Brough D. Understanding the mechanism of IL-1beta secretion. Cytokine Growth Factor Rev. 2011;22:189–195. doi: 10.1016/j.cytogfr.2011.10.001. PubMed DOI PMC
Hornung V., Ablasser A., Charrel-Dennis M., Bauernfeind F., Horvath G., Caffrey D.R., Latz E., Fitzgerald K.A. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458:514–518. doi: 10.1038/nature07725. PubMed DOI PMC
Gerlic M., Faustin B., Postigo A., Yu E.C., Proell M., Gombosuren N., Krajewska M., Flynn R., Croft M., Way M., et al. Vaccinia virus F1L protein promotes virulence by inhibiting inflammasome activation. Proc. Natl. Acad. Sci. USA. 2013;110:7808–7813. doi: 10.1073/pnas.1215995110. PubMed DOI PMC
Isaacs A., Lindenmann J. Virus interference. I. The interferon. Proc. R Soc. Lond B Biol. Sci. 1957;147:258–267. doi: 10.1098/rspb.1957.0048. PubMed DOI
Lee S.B., Melkova Z., Yan W., Williams B.R., Hovanessian A.G., Esteban M. The interferon-induced double-stranded RNA-activated human p68 protein kinase potently inhibits protein synthesis in cultured cells. Virology. 1993;192:380–385. doi: 10.1006/viro.1993.1048. PubMed DOI
Rivas C., Gil J., Melkova Z., Esteban M., Diaz-Guerra M. Vaccinia virus E3L protein is an inhibitor of the interferon (i.f.n.)-induced 2-5A synthetase enzyme. Virology. 1998;243:406–414. doi: 10.1006/viro.1998.9072. PubMed DOI
Rodriguez J.R., Rodriguez D., Esteban M. Interferon treatment inhibits early events in vaccinia virus gene expression in infected mice. Virology. 1991;185:929–933. doi: 10.1016/0042-6822(91)90575-V. PubMed DOI
Liu G., Zhai Q., Schaffner D.J., Wu A., Yohannes A., Robinson T.M., Maland M., Wells J., Voss T.G., Bailey C., et al. Prevention of lethal respiratory vaccinia infections in mice with interferon-alpha and interferon-gamma. FEMS Immunol. Med. Microbiol. 2004;40:201–206. doi: 10.1016/S0928-8244(03)00358-4. PubMed DOI
Green D.R., Ferguson T., Zitvogel L., Kroemer G. Immunogenic and tolerogenic cell death. Nat. Rev. Immunol. 2009;9:353–363. doi: 10.1038/nri2545. PubMed DOI PMC
Kepp O., Senovilla L., Galluzzi L., Panaretakis T., Tesniere A., Schlemmer F., Madeo F., Zitvogel L., Kroemer G. Viral subversion of immunogenic cell death. Cell Cycle. 2009;8:860–869. doi: 10.4161/cc.8.6.7939. PubMed DOI
Humlova Z., Vokurka M., Esteban M., Melkova Z. Vaccinia virus induces apoptosis of infected macrophages. J. Gen. Virol. 2002;83:2821–2832. doi: 10.1099/0022-1317-83-11-2821. PubMed DOI
Baixeras E., Cebrian A., Albar J.P., Salas J., Martinez A.C., Vinuela E., Revilla Y. Vaccinia virus-induced apoptosis in immature B lymphocytes: Role of cellular Bcl-2. Virus Res. 1998;58:107–113. doi: 10.1016/S0168-1702(98)00105-1. PubMed DOI
Engelmayer J., Larsson M., Subklewe M., Chahroudi A., Cox W.I., Steinman R.M., Bhardwaj N. Vaccinia virus inhibits the maturation of human dendritic cells: A novel mechanism of immune evasion. J. Immunol. 1999;163:6762–6768. PubMed
Heylbroeck C., Balachandran S., Servant M.J., DeLuca C., Barber G.N., Lin R., Hiscott J. The IRF-3 transcription factor mediates Sendai virus-induced apoptosis. J. Virol. 2000;74:3781–3792. doi: 10.1128/JVI.74.8.3781-3792.2000. PubMed DOI PMC
Apelbaum A., Yarden G., Warszawski S., Harari D., Schreiber G. Type I interferons induce apoptosis by balancing cFLIP and caspase-8 independent of death ligands. Mol. Cell Biol. 2013;33:800–814. doi: 10.1128/MCB.01430-12. PubMed DOI PMC
Vestergaard C., Yoneyama H., Murai M., Nakamura K., Tamaki K., Terashima Y., Imai T., Yoshie O., Irimura T., Mizutani H., et al. Overproduction of Th2-specific chemokines in NC/Nga mice exhibiting atopic dermatitis-like lesions. J. Clin. Investig. 1999;104:1097–1105. doi: 10.1172/JCI7613. PubMed DOI PMC
Komastu T., Ireland D.D., Reiss C.S. IL-12 and viral infections. Cytokine Growth Factor Rev. 1998;9:277–285. doi: 10.1016/S1359-6101(98)00017-3. PubMed DOI PMC
Fujikura Y., Kudlackova P., Vokurka M., Krijt J., Melkova Z. The effect of nitric oxide on vaccinia virus-encoded ribonucleotide reductase. Nitric Oxide. 2009;20:114–121. doi: 10.1016/j.niox.2008.09.002. PubMed DOI
Melkova Z., Esteban M. Inhibition of vaccinia virus DNA replication by inducible expression of nitric oxide synthase. J. Immunol. 1995;155:5711–5718. PubMed
Karupiah G., Xie Q.W., Buller R.M., Nathan C., Duarte C., MacMicking J.D. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science. 1993;261:1445–1448. doi: 10.1126/science.7690156. PubMed DOI
Huang S., Hendriks W., Althage A., Hemmi S., Bluethmann H., Kamijo R., Vilcek J., Zinkernagel R.M., Aguet M. Immune response in mice that lack the interferon-gamma receptor. Science. 1993;259:1742–1745. doi: 10.1126/science.8456301. PubMed DOI
Ma W.T., Yao X.T., Peng Q., Chen D.K. The protective and pathogenic roles of IL-17 in viral infections: Friend or foe? Open Biol. 2019;9:190109. doi: 10.1098/rsob.190109. PubMed DOI PMC
Darling A.R., Freyschmidt E.J., Burton O.T., Koleoglou K.J., Oyoshi M.K., Oettgen H.C. IL-10 suppresses IL-17-mediated dermal inflammation and reduces the systemic burden of Vaccinia virus in a mouse model of eczema vaccinatum. Clin. Immunol. 2014;150:153–160. doi: 10.1016/j.clim.2013.11.010. PubMed DOI PMC
Patera A.C., Pesnicak L., Bertin J., Cohen J.I. Interleukin 17 modulates the immune response to vaccinia virus infection. Virology. 2002;299:56–63. doi: 10.1006/viro.2002.1400. PubMed DOI
Shiohara T., Hayakawa J., Mizukawa Y. Animal models for atopic dermatitis: Are they relevant to human disease? J. Dermatol. Sci. 2004;36:1–9. doi: 10.1016/j.jdermsci.2004.02.013. PubMed DOI
Achdout H., Lustig S., Israely T., Erez N., Politi B., Tamir H., Israeli O., Waner T., Melamed S., Paran N. Induction, treatment and prevention of eczema vaccinatum in atopic dermatitis mouse models. Vaccine. 2017;35:4245–4254. doi: 10.1016/j.vaccine.2017.06.014. PubMed DOI
Leung D.Y., Gao P.S., Grigoryev D.N., Rafaels N.M., Streib J.E., Howell M.D., Taylor P.A., Boguniewicz M., Canniff J., Armstrong B., et al. Human atopic dermatitis complicated by eczema herpeticum is associated with abnormalities in IFN-gamma response. J. Allergy Clin. Immunol. 2011;127:965–973.e5. doi: 10.1016/j.jaci.2011.02.010. PubMed DOI PMC