Electron Beam-Treated Enzymatically Mineralized Gelatin Hydrogels for Bone Tissue Engineering
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MA 2432/5-1
Deutsche Forschungsgemeinschaft
21-06065S
Grantová Agentura České Republiky
PubMed
34698221
PubMed Central
PMC8544455
DOI
10.3390/jfb12040057
PII: jfb12040057
Knihovny.cz E-zdroje
- Klíčová slova
- bone tissue engineering, electron beam treatment, enzymatic mineralisation, gelatin hydrogels,
- Publikační typ
- časopisecké články MeSH
Biological hydrogels are highly promising materials for bone tissue engineering (BTE) due to their high biocompatibility and biomimetic characteristics. However, for advanced and customized BTE, precise tools for material stabilization and tuning material properties are desired while optimal mineralisation must be ensured. Therefore, reagent-free crosslinking techniques such as high energy electron beam treatment promise effective material modifications without formation of cytotoxic by-products. In the case of the hydrogel gelatin, electron beam crosslinking further induces thermal stability enabling biomedical application at physiological temperatures. In the case of enzymatic mineralisation, induced by Alkaline Phosphatase (ALP) and mediated by Calcium Glycerophosphate (CaGP), it is necessary to investigate if electron beam treatment before mineralisation has an influence on the enzymatic activity and thus affects the mineralisation process. The presented study investigates electron beam-treated gelatin hydrogels with previously incorporated ALP and successive mineralisation via incubation in a medium containing CaGP. It could be shown that electron beam treatment optimally maintains enzymatic activity of ALP which allows mineralisation. Furthermore, the precise tuning of material properties such as increasing compressive modulus is possible. This study characterizes the mineralised hydrogels in terms of mineral formation and demonstrates the formation of CaP in dependence of ALP concentration and electron dose. Furthermore, investigations of uniaxial compression stability indicate increased compression moduli for mineralised electron beam-treated gelatin hydrogels. In summary, electron beam-treated mineralized gelatin hydrogels reveal good cytocompatibility for MG-63 osteoblast like cells indicating a high potential for BTE applications.
Chemistry Department Lancaster University Lancaster LA1 4YB UK
Engineering Department Lancaster University Lancaster LA1 4YW UK
Lancaster Medical School Faculty of Health and Medicine Lancaster University Lancaster LA1 4YW UK
Leibniz Institute of Surface Engineering Permoserstraße 15 04318 Leipzig Germany
Materials Science Institute Lancaster University Lancaster LA1 4YW UK
Zobrazit více v PubMed
Douglas T.E.L., Messersmith P.B., Chasan S., Mikos A.G., de Mulder E.L.W., Dickson G., Schaubroeck D., Balcaen L., Vanhaecke F., Dubruel P., et al. Enzymatic Mineralization of Hydrogels for Bone Tissue Engineering by Incorporation of Alkaline Phosphatase. Macromol. Biosci. 2012;12:1077–1089. doi: 10.1002/mabi.201100501. PubMed DOI PMC
Leeuwenburgh S.C.G., Jansen J.A., Mikos A.G. Functionalization of Oligo(Poly(Ethylene Glycol)Fumarate) Hydrogels with Finely Dispersed Calcium Phosphate Nanocrystals for Bone-Substituting Purposes. J. Biomater. Sci. Polym. Ed. 2007;18:1547–1564. doi: 10.1163/156856207794761998. PubMed DOI
Leeuwenburgh S.C.G., Ana I.D., Jansen J.A. Sodium Citrate as an Effective Dispersant for the Synthesis of Inorganic–Organic Composites with a Nanodispersed Mineral Phase. Acta Biomater. 2010;6:836–844. doi: 10.1016/j.actbio.2009.09.005. PubMed DOI
LeGeros R.Z. Calcium Phosphates in Oral Biology and Medicine. Monogr. Oral Sci. 1991;15:1–201. PubMed
Ruhé P.Q., Boerman O.C., Russel F.G.M., Spauwen P.H.M., Mikos A.G., Jansen J.A. Controlled Release of RhBMP-2 Loaded Poly(Dl-Lactic-Co-Glycolic Acid)/Calcium Phosphate Cement Composites In Vivo. J. Control. Release. 2005;106:162–171. doi: 10.1016/j.jconrel.2005.04.018. PubMed DOI
Douglas T.E.L., Pamula E., Leeuwenburgh S.C.G. Biomimetic Mineralization of Hydrogel Biomaterials for Bone Tissue Engineering. In: Ramalingam M., Wang X., Chen G., Ma P., Cui F.-Z., editors. Biomimetics. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2013. pp. 51–67.
Crane N.J., Popescu V., Morris M.D., Steenhuis P., Ignelzi M.A. Raman Spectroscopic Evidence for Octacalcium Phosphate and Other Transient Mineral Species Deposited during Intramembranous Mineralization. Bone. 2006;39:434–442. doi: 10.1016/j.bone.2006.02.059. PubMed DOI
Frost R.L., Xi Y., Beganovic M., Belotti F.M., Scholz R. Vibrational Spectroscopy of the Phosphate Mineral Lazulite—(Mg, Fe)Al2(PO4)2·(OH)2 Found in the Minas Gerais, Brazil. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013;107:241–247. doi: 10.1016/j.saa.2013.01.056. PubMed DOI
Frushour B.G., Koenig J.L. Raman Scattering of Collagen, Gelatin, and Elastin. Biopolymers. 1975;14:379–391. doi: 10.1002/bip.1975.360140211. PubMed DOI
Tang H., Yao H., Wang G., Wang Y., Li Y., Feng M. NIR Raman Spectroscopic Investigation of Single Mitochondria Trapped by Optical Tweezers. Opt. Express. 2007;15:12708. doi: 10.1364/OE.15.012708. PubMed DOI
Sharma A., Goring A., Staines K.A., Emery R.J.H., Pitsillides A.A., Oreffo R.O.C., Mahajan S., Clarkin C.E. Raman Spectroscopy Links Differentiating Osteoblast Matrix Signatures to Pro-Angiogenic Potential. Matrix Biol. Plus. 2020;5:100018. doi: 10.1016/j.mbplus.2019.100018. PubMed DOI PMC
Derbel N., Hernández B., Pflüger F., Liquier J., Geinguenaud F., Jaïdane N., Ben Lakhdar Z., Ghomi M. Vibrational Analysis of Amino Acids and Short Peptides in Hydrated Media. I. L-Glycine and L-Leucine. J. Phys. Chem. B. 2007;111:1470–1477. doi: 10.1021/jp0633953. PubMed DOI
Wisotzki E.I., Hennes M., Schuldt C., Engert F., Knolle W., Decker U., Käs J.A., Zink M., Mayr S.G. Tailoring the Material Properties of Gelatin Hydrogels by High Energy Electron Irradiation. J. Mater. Chem. B. 2014;2:4297–4309. doi: 10.1039/C4TB00429A. PubMed DOI
Spoerke E.D., Anthony S.G., Stupp S.I. Enzyme Directed Templating of Artificial Bone Mineral. Adv. Mater. 2009;21:425–430. doi: 10.1002/adma.200802242. PubMed DOI PMC
Mandair G.S., Morris M.D. Contributions of Raman Spectroscopy to the Understanding of Bone Strength. BoneKEy Rep. 2015;4 doi: 10.1038/bonekey.2014.115. PubMed DOI PMC
Kazanci M., Fratzl P., Klaushofer K., Paschalis E.P. Complementary Information on In Vitro Conversion of Amorphous (Precursor) Calcium Phosphate to Hydroxyapatite from Raman Microspectroscopy and Wide-Angle X-Ray Scattering. Calcif. Tissue Int. 2006;79:354–359. doi: 10.1007/s00223-006-0011-9. PubMed DOI
Douglas T.E.L., Krawczyk G., Pamula E., Declercq H.A., Schaubroeck D., Bucko M.M., Balcaen L., Van Der Voort P., Bliznuk V., van den Vreken N.M.F., et al. Generation of Composites for Bone Tissue-Engineering Applications Consisting of Gellan Gum Hydrogels Mineralized with Calcium and Magnesium Phosphate Phases by Enzymatic Means: Gellan Gum and Calcium and Magnesium Phosphate Composites. J. Tissue Eng. Regen. Med. 2016;10:938–954. doi: 10.1002/term.1875. PubMed DOI
Wisotzki E.I., Friedrich R.P., Weidt A., Alexiou C., Mayr S.G., Zink M. Cellular Response to Reagent-Free Electron-Irradiated Gelatin Hydrogels. Macromol. Biosci. 2016;16:914–924. doi: 10.1002/mabi.201500408. PubMed DOI
Osathanon T., Giachelli C.M., Somerman M.J. Immobilization of Alkaline Phosphatase on Microporous Nanofibrous Fibrin Scaffolds for Bone Tissue Engineering. Biomaterials. 2009;30:4513–4521. doi: 10.1016/j.biomaterials.2009.05.022. PubMed DOI PMC
Borau C., Kamm R.D., García-Aznar J.M. Mechano-Sensing and Cell Migration: A 3D Model Approach. Phys. Biol. 2011;8:066008. doi: 10.1088/1478-3975/8/6/066008. PubMed DOI
Moreo P., García-Aznar J.M., Doblaré M. Modeling Mechanosensing and Its Effect on the Migration and Proliferation of Adherent Cells. Acta Biomater. 2008;4:613–621. doi: 10.1016/j.actbio.2007.10.014. PubMed DOI
Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of Cell Adhesion, Proliferation and Differentiation on Materials Designed for Body Implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Yang Y., Feng Y., Qu R., Li Q., Rong D., Fan T., Yang Y., Sun B., Bi Z., Khan A.U., et al. Synthesis of Aligned Porous Polyethylene Glycol/Silk Fibroin/Hydroxyapatite Scaffolds for Osteoinduction in Bone Tissue Engineering. Stem Cell Res. Ther. 2020;11:522. doi: 10.1186/s13287-020-02024-8. PubMed DOI PMC
Bacakova L., Zarubova J., Travnickova M., Musilkova J., Pajorova J., Slepicka P., Kasalkova N.S., Svorcik V., Kolska Z., Motarjemi H., et al. Stem Cells: Their Source, Potency and Use in Regenerative Therapies with Focus on Adipose-Derived Stem Cells—A Review. Biotechnol. Adv. 2018;36:1111–1126. doi: 10.1016/j.biotechadv.2018.03.011. PubMed DOI
Atif A.R., Pujari-Palmer M., Tenje M., Mestres G. A Microfluidics-Based Method for Culturing Osteoblasts on Biomimetic Hydroxyapatite. Acta Biomater. 2021;127:327–337. doi: 10.1016/j.actbio.2021.03.046. PubMed DOI
Schumacher M., Lode A., Helth A., Gelinsky M. A Novel Strontium(II)-Modified Calcium Phosphate Bone Cement Stimulates Human-Bone-Marrow-Derived Mesenchymal Stem Cell Proliferation and Osteogenic Differentiation In Vitro. Acta Biomater. 2013;9:9547–9557. doi: 10.1016/j.actbio.2013.07.027. PubMed DOI