• This record comes from PubMed

Phylogenomics and loci dropout patterns of deeply diverged Zodarion ant-eating spiders suggest a high potential of RAD-seq for genus-level spider phylogenetics

. 2022 Jun ; 38 (3) : 320-334. [epub] 20211026

Language English Country United States Media print-electronic

Document type Journal Article

RAD sequencing yields large amounts of genome-wide data at a relatively low cost and without requiring previous taxon-specific information, making it ideal for evolutionary studies of highly diversified and neglected organisms. However, concerns about information decay with phylogenetic distance have discouraged its use for assessing supraspecific relationships. Here, using Double Digest Restriction Associated DNA (ddRAD) data, we perform the first deep-level approach to the phylogeny of Zodarion, a highly diversified spider genus. We explore the impact of loci and taxon filtering across concatenated and multispecies coalescent reconstruction methods and investigate the patterns of information dropout in reference to both the time of divergence and the mitochondrial divergence between taxa. We found that relaxed loci-filtering and nested taxon-filtering strategies maximized the amount of molecular information and improved phylogenetic inference. As expected, there was a clear pattern of allele dropout towards deeper time and mitochondrial divergences, but the phylogenetic signal remained strong throughout the phylogeny. Therefore, we inferred topologies that were almost fully resolved, highly supported, and noticeably congruent between setups and inference methods, which highlights overall inconsistency in the taxonomy of Zodarion. Because Zodarion appears to be among the oldest and most mitochondrially diversified spider genera, our results suggest that ddRAD data show high potential for inferring intra-generic relationships across spiders and probably also in other taxonomic groups.

See more in PubMed

Aberer, A.J., Krompass, D. & Stamatakis, A. (2013) Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Systematic Biology, 62, 162-166. https://doi.org/10.1093/sysbio/sys078

Allio, R., Donega, S., Galtier, N. & Nabholz, B. (2017) Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Molecular Biology and Evolution, 34, 2762-2772. https://doi.org/10.1093/molbev/msx197

Andermann, T., Torres Jiménez, M.F., Matos-Maraví, P., Batista, R., Blanco-Pastor, J.L., Gustafsson, A.L.S. et al. (2020) A guide to carrying out a phylogenomic Target Sequence Capture project. Frontiers in Genetics, 10, 1-20. https://doi.org/10.3389/fgene.2019.01407

Andrews, K.R., Good, J.M., Miller, M.R., Luikart, G. & Hohenlohe, P.A. (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics, 17, 81-92. https://doi.org/10.1038/nrg.2015.28

Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Astrin, J.J., Höfer, H., Spelda, J., Holstein, J., Bayer, S., Hendrich, L. et al. (2016) Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS One, 11, e0162624. https://doi.org/10.1371/journal.pone.0162624

Baird, N.A., Etter, P.D., Atwood, T.S., Currey, M.C., Shiver, A.L., Lewis, Z.A. et al. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE, 3, e3376. https://doi.org/10.1371/journal.pone.0003376

Bidegaray-Batista, L. & Arnedo, M.A. (2011) Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders. BMC Evolutionary Biology, 11, 317. https://doi.org/10.1186/1471-2148-11-317

Binford, G.J., Callahan, M.S., Bodner, M.R., Rynerson, M.R., Núñez, P.B., Ellison, C.E. et al. (2008) Phylogenetic relationships of Loxosceles and Sicarius spiders are consistent with Western Gondwanan vicariance. Molecular Phylogenetics and Evolution, 49, 538-553. https://doi.org/10.1016/j.ympev.2008.08.003

Blakey, R.C. (2008) Gondwana paleogeography from assembly to breakup-a 500 m.y. odyssey. Geological Society of America Special Paper, 441, 1-28. https://doi.org/10.1130/2008.2441(01)

Bond, J.E., Garrison, N.L., Hamilton, C.A., Godwin, R.L., Hedin, M. & Agnarsson, I. (2014) Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Current Biology, 24, 1765-1771. https://doi.org/10.1016/j.cub.2014.06.034

Bosmans, R. (1994) Revision of the genus Zodarion Walckenaer, 1833 in the Iberian Peninsula and Balearic Islands (Araneae, Zodariidae). -Eos, 69, 115-142.

Bosmans, R. (1997) Revision of the genus Zodarion Walckenaer, 1833, part II. Western and Central Europe, including Italy (Araneae: Zodariidae). Bulletin of the British Arachnological Society, 10, 265-294.

Bosmans, R., Pantini, P., Loverre, P. & Addante, R.(2019) New species and new records of ant-eating spiders from Mediterranean Europe (Araneae: Zodariidae). Arachnologische Mitteilungen / Arachnology Letters, 57, 8-20. https://doi.org/10.30963/aramit5703

Bosmans, R. (2009) Revision of the genus Zodarion Walckenaer, 1833, part III. South East Europe and Turkey (Araneae: Zodariidae). Contributions to Natural History, 12, 211-295.

Brower, A.V.Z. (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America, 91, 6491-6495. https://doi.org/10.1073/pnas.91.14.6491

Burns, M., Starrett, J., Derkarabetian, S., Richart, C.H., Cabrero, A. & Hedin, M. (2017) Comparative performance of double-digest RAD sequencing across divergent arachnid lineages. Molecular Ecology Resources, 17, 418-430. https://doi.org/10.1111/1755-0998.12575

Čandek, K. & Kuntner, M. (2015) DNA barcoding gap: reliable species identification over morphological and geographical scales. Molecular Ecology Resources, 15, 268-277. https://doi.org/10.1111/1755-0998.12304

Cárdenas, M., Jiroš, P. & Pekár, S. (2012) Selective olfactory attention of a specialised predator to intraspecific chemical signals of its prey. Naturwissenschaften, 99, 597-605. https://doi.org/10.1007/s00114-012-0938-9

Castalanelli, M.A., Teale, R., Rix, M.G., Kennington, W.J. & Harvey, M.A. (2014) Barcoding of mygalomorph spiders (Araneae: Mygalomorphae) in the Pilbara bioregion of Western Australia reveals a highly diverse biota. Invertebrate Systematics, 28, 375-385. https://doi.org/10.1071/IS13058

Coddington, J.A., Agnarsson, I., Cheng, R.-C., Čandek, K., Driskell, A., Frick, H. et al. (2016) DNA barcode data accurately assign higher spider taxa. PeerJ, 4, e2201. https://doi.org/10.7717/peerj.2201

Collins, R.A. & Hrbek, T. (2018) An in silico comparison of protocols for dated phylogenomics. Systematic Biology, 67, 633-650. https://doi.org/10.1093/sysbio/syx089

Crotti, M., Barratt, C.D., Loader, S.P., Gower, D.J. & Streicher, J.W. (2019) Causes and analytical impacts of missing data in RADseq phylogenetics: insights from an African frog (Afrixalus). Zoologica Scripta, 48, 157-167. https://doi.org/10.1111/zsc.12335

Darriba, D., Posada, D., Kozlov, A.M., Stamatakis, A., Morel, B. & Flouri, T. (2019) ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution, 37(1), 291-294. https://doi.org/10.1093/molbev/msz189

Davidson, R., Vachaspati, P., Mirarab, S. & Warnow, T. (2015) Phylogenomic species tree estimation in the presence of incomplete lineage sorting and horizontal gene transfer. BMC Genomics, 16, S1. https://doi.org/10.1186/1471-2164-16-S10-S1

Eaton, D.A.R. & Overcast, I. (2020) ipyrad: interactive assembly and analysis of RADseq datasets. Bioinformatics, 36, 2592-2594. https://doi.org/10.1093/bioinformatics/btz966

Eaton, D.A.R., Spriggs, E.L., Park, B. & Donoghue, M.J. (2016) Misconceptions on missing data in RAD-seq phylogenetics with a deep-scale example from flowering plants. Systematic Biology, 66, syw092. https://doi.org/10.1093/sysbio/syw092

Ewels, P., Magnusson, M., Lundin, S. & Käller, M. (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32, 3047-3048. https://doi.org/10.1093/bioinformatics/btw354

Fernández, R., Hormiga, G. & Giribet, G. (2014) Phylogenomic analysis of spiders reveals nonmonophyly of orb weavers. Current Biology, 24, 1772-1777. https://doi.org/10.1016/j.cub.2014.06.035

Fernández, R., Kallal, R.J., Dimitrov, D., Ballesteros, J.A., Arnedo, M.A., Giribet, G. et al. (2018) Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Current Biology, 28, 1489-1497. https://doi.org/10.1016/j.cub.2018.03.064

Foelix, R. (2011) Biology of spiders, 3rd edition. New York: Oxford University Press.

Foley, S., Saranathan, V. & Piel, W.H. (2020) The evolution of coloration and opsins in tarantulas. Proceedings of the Royal Society B: Biological Sciences, 287, 20201688. https://doi.org/10.1098/rspb.2020.1688

Foottit, R.G., Maw, H.E.L., Von Dohlen, C.D. & Hebert, P.D.N. (2008) Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Molecular Ecology Resources, 8, 1189-1201. https://doi.org/10.1111/j.1755-0998.2008.02297.x

Galtier, N., Jobson, R.W., Nabholz, B., Glémin, S. & Blier, P.U. (2009) Mitochondrial whims: metabolic rate, longevity and the rate of molecular evolution. Biology Letters, 5, 413-416. https://doi.org/10.1098/rsbl.2008.0662

Girard, M.B., Elias, D.O., Azevedo, G., Bi, K., Kasumovic, M.M., Waldock, J.M. et al. (2021) Phylogenomics of peacock spiders and their kin (Salticidae: Maratus), with implications for the evolution of male courtship displays. Biological Journal of the Linnean Society, 132, 471-494. https://doi.org/10.1093/biolinnean/blaa165

Goloboff, P.A., Farris, J.S. & Nixon, K.C. (2008) TNT, a free program for phylogenetic analysis. Cladistics, 24, 774-786. https://doi.org/10.1111/j.1096-0031.2008.00217.x

Graham, M.R., Santibáñez-López, C.E., Derkarabetian, S. & Hendrixson, B.E. (2020) Pleistocene persistence and expansion in tarantulas on the Colorado Plateau and the effects of missing data on phylogeographical inferences from RADseq. Molecular Ecology, 29, 3684-3701. https://doi.org/10.1111/mec.15588

Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W. & Hebert, P.D.N. (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences, 103, 968-971. https://doi.org/10.1073/pnas.0510466103

Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.

Hamilton, C.A., Hendrixson, B.E., Brewer, M.S. & Bond, J.E. (2014) An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: a case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). Molecular Phylogenetics and Evolution, 71, 79-93. https://doi.org/10.1016/j.ympev.2013.11.007

Harvey, M.G., Smith, B.T., Glenn, T.C., Faircloth, B.C. & Brumfield, R.T. (2016) Sequence capture versus restriction site associated DNA sequencing for shallow systematics. Systematic Biology, 65, 910-924. https://doi.org/10.1093/sysbio/syw036

Hebert, P.D.N., Ratnasingham, S. & DeWaard, J.R. (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings. Biological Sciences, 270(Suppl.), S96-S99. https://doi.org/10.1098/rsbl.2003.0025

Hedin, M., Derkarabetian, S., Alfaro, A., Ramírez, M.J. & Bond, J.E. (2019) Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci. PeerJ, 7, e6864. https://doi.org/10.7717/peerj.6864

Hedin, M., Foldi, S. & Rajah-Boyer, B. (2020) Evolutionary divergences mirror Pleistocene paleodrainages in a rapidly-evolving complex of oasis-dwelling jumping spiders (Salticidae, Habronattus tarsalis). Molecular Phylogenetics and Evolution, 144, 106696. https://doi.org/10.1016/j.ympev.2019.106696

Herrera, S. & Shank, T.M. (2016) RAD sequencing enables unprecedented phylogenetic resolution and objective species delimitation in recalcitrant divergent taxa. Molecular Phylogenetics and Evolution, 100, 70-79. https://doi.org/10.1016/j.ympev.2016.03.010

Hodel, R.G.J., Chen, S., Payton, A.C., McDaniel, S.F., Soltis, P. & Soltis, D.E. (2017) Adding loci improves phylogeographic resolution in red mangroves despite increased missing data: comparing microsatellites and RAD-Seq and investigating loci filtering. Scientific Reports, 7, 17598. https://doi.org/10.1038/s41598-017-16810-7

Huang, H. & Knowles, L.L. (2016) Unforeseen consequences of excluding missing data from next-generation sequences: simulation study of RAD sequences. Systematic Biology, 65, 357-365. https://doi.org/10.1093/sysbio/syu046

Ivanov, V., Lee, K.M. & Mutanen, M. (2018) Mitonuclear discordance in wolf spiders: Genomic evidence for species integrity and introgression. Molecular Ecology, 27, 1681-1695. https://doi.org/10.1111/mec.14564

Junier, T. & Zdobnov, E.M. (2010) The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics, 26, 1669-1670. https://doi.org/10.1093/bioinformatics/btq243

Kallal, R.J., Kulkarni, S.S., Dimitrov, D., Benavides, L.R., Arnedo, M.A., Giribet, G. et al. (2021) Converging on the orb: denser taxon sampling elucidates spider phylogeny and new analytical methods support repeated evolution of the orb web. Cladistics, 37, 298-316. https://doi.org/10.1111/cla.12439

Kocot, K.M., Cannon, J.T., Todt, C., Citarella, M.R., Kohn, A.B., Meyer, A. et al. (2011) Phylogenomics reveals deep molluscan relationships. Nature, 477, 452-456. https://doi.org/10.1038/nature10382

Komarova, V.A., Kostin, D.S., Bryja, J., Mikula, O., Bryjová, A., Čížková, D. et al. (2021) Complex reticulate evolution of speckled brush-furred rats (Lophuromys) in the Ethiopian Centre of endemism. Molecular Ecology. 30(10), 2349-2365. https://doi.org/10.1111/mec.15891

Kozlov, A.M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35, 4453-4455. https://doi.org/10.1093/bioinformatics/btz305

Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1549. https://doi.org/10.1093/molbev/msy096

Kuntner, M., Hamilton, C.A., Cheng, R.-C., Gregorič, M., Lupše, N., Lokovšek, T. et al. (2019) Golden Orbweavers ignore biological rules: phylogenomic and comparative analyses unravel a complex evolution of sexual size dimorphism. Systematic Biology, 68, 555-572. https://doi.org/10.1093/sysbio/syy082

Laird, C.D., Mcconaughy, B.L. & Mccarthy, B.J. (1969) Rate of fixation of nucleotide substitutions in evolution. Nature, 224, 149-154. https://doi.org/10.1038/224149a0

Leaché, A.D., Chavez, A.S., Jones, L.N., Grummer, J.A., Gottscho, A.D. & Linkem, C.W. (2015) Phylogenomics of phrynosomatid lizards: conflicting signals from sequence capture versus restriction site associated DNA sequencing. Genome Biology and Evolution, 7, 706-719. https://doi.org/10.1093/gbe/evv026

Leavitt, D.H., Starrett, J., Westphal, M.F. & Hedin, M. (2015) Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae). Molecular Phylogenetics and Evolution, 91, 56-67. https://doi.org/10.1016/j.ympev.2015.05.016

Lecaudey, L.A., Schliewen, U.K., Osinov, A.G., Taylor, E.B., Bernatchez, L. & Weiss, S.J. (2018) Inferring phylogenetic structure, hybridization and divergence times within Salmoninae (Teleostei: Salmonidae) using RAD-sequencing. Molecular Phylogenetics and Evolution, 124, 82-99. https://doi.org/10.1016/j.ympev.2018.02.022

Lee, K.M., Kivelä, S.M., Ivanov, V., Hausmann, A., Kaila, L., Wahlberg, N. et al. (2018) Information dropout patterns in Restriction Site Associated DNA phylogenomics and a comparison with multilocus Sanger data in a species-rich moth genus. Systematic Biology, 67, 925-939. https://doi.org/10.1093/sysbio/syy029

Leebens-Mack, J.H., Barker, M.S., Carpenter, E.J., Deyholos, M.K., Gitzendanner, M.A., Wong, G.K.S. (2019) One thousand plant transcriptomes and the phylogenomics of green plants. Nature, 574, 679-685. https://doi.org/10.1038/s41586-019-1693-2

Levy, G. (1992) The spider genera Palaestina, Trygetus, Zodarion and Ranops (Araneae, Zodariidae) in Israel with annotations on species of the Middle East. Israel Journal of Zoology, 38, 67-110.

Luo, Y. & Li, S. (2015) Global invasion history of the Mediterranean recluse spider: a concordance with human expansion. Ecography, 38, 1080-1089. https://doi.org/10.1111/ecog.01244

Macías-Hernández, N., Oromí, P. & Arnedo, M.A. (2008) Patterns of diversification on old volcanic islands as revealed by the woodlouse-hunter spider genus Dysdera (Araneae, Dysderidae) in the eastern Canary Islands. Biological Journal of the Linnean Society, 94, 589-615. https://doi.org/10.1111/j.1095-8312.2008.01007.x

Maddison, W.P. & Knowles, L.L. (2006) Inferring phylogengy despite incomplete lineage sorting. Systematic Biology, 55, 21-30. https://doi.org/10.1080/10635150500354928

Manthey, J.D., Campillo, L.C., Burns, K.J. & Moyle, R.G. (2016) Comparison of target-capture and restriction-site associated DNA sequencing for phylogenomics: a test in cardinalid tanagers (Aves, Genus: Piranga). Systematic Biology, 65, 640-650. https://doi.org/10.1093/sysbio/syw005

Michálek, O., Kuhn-Nentwig, L. & Pekár, S. (2019) High specific efficiency of venom of two prey-specialized spiders. Toxins, 11, 687. https://doi.org/10.3390/toxins11120687

Mirarab, S. (2019) Species tree estimation using ASTRAL: practical considerations. arXiv 1-21.

Misof, B., Liu, S., Meusemann, K., Peters, R.S., Donath, A., Mayer, C. et al. (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science, 346, 763-767. https://doi.org/10.1126/science.1257570

Monzó, C., Juan-Blasco, M., Pekár, S., Mollá, Ó., Castañera, P. & Urbaneja, A. (2013) Pre-adaptive shift of a native predator (Araneae, Zodariidae) to an abundant invasive ant species (Hymenoptera, Formicidae). Biological Invasions, 15, 89-100. https://doi.org/10.1007/s10530-012-0270-5

Morel, B., Kozlov, A.M. & Stamatakis, A. (2019) ParGenes: a tool for massively parallel model selection and phylogenetic tree inference on thousands of genes. Bioinformatics, 35, 1771-1773. https://doi.org/10.1093/bioinformatics/bty839

Müller, K. & Albach, D.C. (2010) Evolutionary rates in Veronica L. (Plantaginaceae): disentangling the influence of life history and breeding system. Journal of Molecular Evolution, 70, 44-56. https://doi.org/10.1007/s00239-009-9307-5

Nagano, Y., Mimura, T., Kotoda, N., Matsumoto, R., Nagano, A.J., Honjo, M.N. et al. (2018) Phylogenetic relationships of Aurantioideae (Rutaceae) based on RAD-Seq. Tree Genetics and Genomes, 14, 6. https://doi.org/10.1007/s11295-017-1223-z

Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating Maximum-Likelihood phylogenies. Molecular Biology and Evolution, 32, 268-274. https://doi.org/10.1093/molbev/msu300

Opatova, V., Bond, J.E. & Arnedo, M.A. (2013) Ancient origins of the Mediterranean trap-door spiders of the family Ctenizidae (Araneae, Mygalomorphae). Molecular Phylogenetics and Evolution, 69, 1135-1145. https://doi.org/10.1016/j.ympev.2013.08.002

Opatova, V., Hamilton, C.A., Hedin, M., De Oca, L.M., Král, J. & Bond, J.E. (2019) Phylogenetic systematics and evolution of the spider infraorder Mygalomorphae using genomic scale data. Systematic Biology, 69, 671-707. https://doi.org/10.1093/sysbio/syz064

Ortiz, D. & Francke, O.F. (2015) Two new species of Bonnetina tarantulas (Theraphosidae: Theraphosinae) from Mexico: contributions to morphological nomenclature and molecular characterization of types. Journal of Natural History, 49, 685-707. https://doi.org/10.1080/00222933.2014.924770

Ortiz, D., Francke, O.F. & Bond, J.E. (2018) A tangle of forms and phylogeny: extensive morphological homoplasy and molecular clock heterogeneity in Bonnetina and related tarantulas. Molecular Phylogenetics and Evolution, 127, 55-73. https://doi.org/10.1016/j.ympev.2018.05.013

Ortiz, D., Pekár, S., Bilat, J. & Alvarez, N. (2021) Poor performance of DNA barcoding and the impact of RAD loci filtering on the species delimitation of an Iberian ant-eating spider. Molecular Phylogenetics and Evolution, 154, 106997. https://doi.org/10.1016/j.ympev.2020.106997

Papadopoulou, A., Anastasiou, I. & Vogler, A.P. (2010) Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Molecular Biology and Evolution, 27, 1659-1672. https://doi.org/10.1093/molbev/msq051

Pekár, S. (2005) Predatory characteristics of ant-eating Zodarion spiders (Araneae: Zodariidae): potential biological control agents. Biological Control, 34, 196-203. https://doi.org/10.1016/j.biocontrol.2005.05.008

Pekár, S., Cardoso, P. & Meierrose, C. (2003) Additions to the knowledge of Portuguese zodariid spiders (Araneae: Zodariidae). Bulletin of the British Arachnological Society, 12, 385-395.

Pekár, S. & Cardoso, P. (2005) Ant-eating spiders (Araneae: Zodariidae) of Portugal: additions to the current knowledge. Zootaxa, 1009, 51-60.

Pekár, S., Cardoso, P., Barriga, J.C. & Carvalho, J.C. (2011) Update to the zodariid spider fauna of the Iberian Peninsula and Madeira (Araneae: Zodariidae). Zootaxa, 2814, 19. https://doi.org/10.11646/zootaxa.2814.1.2

Pekár, S. & Král, J. (2002) Mimicry complex in two central European zodariid spiders (Araneae: Zodariidae): how Zodarion deceives ants. Biological Journal of the Linnean Society, 75, 517-532. https://doi.org/10.1046/j.1095-8312.2002.00043.x

Pekár, S., Král, J., Malten, A. & Komposch, C. (2005) Comparison of natural histories and karyotypes of two closely related ant-eating spiders, Zodarion hamatum and Z. italicum (Araneae, Zodariidae). Journal of Natural History, 39, 1583-1596. https://doi.org/10.1080/00222930400016762

Pekár, S. & Lubin, Y. (2003) Habitats and interspecific associations of zodariid spiders in the Negev (Araneae: Zodariidae). Israel Journal of Zoology, 49, 255-267. https://doi.org/10.1560/L5J8-456W-3CU5-AR6Q

Pekár, S., Petráková, L., Šedo, O., Korenko, S. & Zdráhal, Z. (2018) Trophic niche, capture efficiency and venom profiles of six sympatric ant-eating spider species (Araneae: Zodariidae). Molecular Ecology, 27, 1053-1064. https://doi.org/10.1111/mec.14485

Pekár, S., Šmerda, J., Hrušková, M., Šedo, O., Muster, C., Cardoso, P. et al. (2012) Prey-race drives differentiation of biotypes in ant-eating spiders. Journal of Animal Ecology, 81, 838-848. https://doi.org/10.1111/j.1365-2656.2012.01957.x

Peterson, B.K., Weber, J.N., Kay, E.H., Fisher, H.S. & Hoekstra, H.E. (2012) Double Digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One, 7, e37135. https://doi.org/10.1371/journal.pone.0037135

R Core Team. (2020) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/

Rabiee, M., Sayyari, E. & Mirarab, S. (2019) Multi-allele species reconstruction using ASTRAL. Molecular Phylogenetics and Evolution, 130, 286-296. https://doi.org/10.1016/j.ympev.2018.10.033

Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901-904. https://doi.org/10.1093/sysbio/syy032

Ramírez, M.J., Magalhaes, I.L.F., Derkarabetian, S., Ledford, J., Griswold, C.E., Wood, H.M. et al. (2021) Sequence capture phylogenomics of true spiders reveals convergent evolution of respiratory systems. Systematic Biology, 70, 14-20. https://doi.org/10.1093/sysbio/syaa043

Rokas, A. & Carroll, S.B. (2005) More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Molecular Biology and Evolution, 22, 1337-1344. https://doi.org/10.1093/molbev/msi121

Rubin, B.E.R., Ree, R.H. & Moreau, C.S. (2012) Inferring phylogenies from RAD sequence data. PLoS One, 7, e33394. https://doi.org/10.1371/journal.pone.0033394

Saclier, N., François, C.M., Konecny-Dupré, L., Lartillot, N., Guéguen, L., Duret, L. et al. (2018) Life history traits impact the nuclear rate of substitution but not the mitochondrial rate in isopods. Molecular Biology and Evolution, 35, 2900-2912. https://doi.org/10.1093/molbev/msy184

Sayyari, E. & Mirarab, S. (2016) Fast coalescent-based computation of local branch support from quartet frequencies. Molecular Biology and Evolution, 33, 1654-1668. https://doi.org/10.1093/molbev/msw079

Settepani, V., Schou, M.F., Greve, M., Grinsted, L., Bechsgaard, J. & Bilde, T. (2017) Evolution of sociality in spiders leads to depleted genomic diversity at both population and species levels. Molecular Ecology, 26, 4197-4210. https://doi.org/10.1111/mec.14196

Sharma, P.P., Kaluziak, S.T., Pérez-Porro, A.R., González, V.L., Hormiga, G., Wheeler, W.C. et al. (2014) Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Molecular Biology and Evolution, 31, 2963-2984. https://doi.org/10.1093/molbev/msu235

Shi, C.-M. & Yang, Z. (2018) Coalescent-based analyses of genomic sequence data provide a robust resolution of phylogenetic relationships among major groups of gibbons. Molecular Biology and Evolution, 35, 159-179. https://doi.org/10.1093/molbev/msx277

Shimodaira, H. (2002) An approximately unbiased test of phylogenetic tree selection. Systematic Biology, 51, 492-508. https://doi.org/10.1080/10635150290069913

Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J. & Rambaut, A. (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4, 1-5. https://doi.org/10.1093/ve/vey016

Thomas, J.A., Welch, J.J., Lanfear, R. & Bromham, L. (2010) A generation time effect on the rate of molecular evolution in invertebrates. Molecular Biology and Evolution, 27, 1173-1180. https://doi.org/10.1093/molbev/msq009

Tripp, E.A., Tsai, Y.-H.-E.-H.-E., Zhuang, Y. & Dexter, K.G. (2017) RADseq dataset with 90% missing data fully resolves recent radiation of Petalidium (Acanthaceae) in the ultra-arid deserts of Namibia. Ecology and Evolution, 7, 7920-7936. https://doi.org/10.1002/ece3.3274

Ward, R.D. (2009) DNA barcode divergence among species and genera of birds and fishes. Molecular Ecology Resources, 9, 1077-1085. https://doi.org/10.1111/j.1755-0998.2009.02541.x

Weller, C. & Wu, M. (2015) A generation-time effect on the rate of molecular evolution in bacteria. Evolution, 69, 643-652. https://doi.org/10.1111/evo.12597

Wheeler, W.C., Coddington, J.A., Crowley, L.M., Dimitrov, D., Goloboff, P.A., Griswold, C.E. et al. (2017) The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics, 33, 574-616. https://doi.org/10.1111/cla.12182

Wickham, H. (2016) ggplot2: elegant graphics for data analysis. New York: Springer-Verlag. https://ggplot2.tidyverse.org

Wilson, J., Rougerie, R., Schonfeld, J., Janzen, D.H., Hallwachs, W., Hajibabaei, M. et al. (2011) When species matches are unavailable are DNA barcodes correctly assigned to higher taxa? An assessment using sphingid moths. BMC Ecology, 11, 18. https://doi.org/10.1186/1472-6785-11-18

Wood, H.M., González, V.L., Lloyd, M., Coddington, J. & Scharff, N. (2018) Next-generation museum genomics: phylogenetic relationships among palpimanoid spiders using sequence capture techniques (Araneae: Palpimanoidea). Molecular Phylogenetics and Evolution, 127, 907-918. https://doi.org/10.1016/j.ympev.2018.06.038

World Spider Catalog. (2021) World Spider Catalog. Version 22.0. https://wsc.nmbe.ch. Nat. Hist. Museum Bern.

Xu, X., Liu, F., Chen, J., Li, D. & Kuntner, M. (2015) Integrative taxonomy of the primitively segmented spider genus Ganthela (Araneae: Mesothelae: Liphistiidae): DNA barcoding gap agrees with morphology. Zoological Journal of the Linnean Society, 175, 288-306. https://doi.org/10.1111/zoj.12280

Xu, X., Su, Y.-C., Ho, S.Y.W., Kuntner, M., Ono, H., Liu, F. et al. (2021) Phylogenomic analysis of ultraconserved elements resolves the evolutionary and biogeographic history of segmented trapdoor spiders. Systematic Biology, 70(6), 1110-1122. https://doi.org/10.1093/sysbio/syaa098

Young, A.D. & Gillung, J.P. (2020) Phylogenomics-principles, opportunities and pitfalls of big-data phylogenetics. Systematic Entomology, 45, 225-247. https://doi.org/10.1111/syen.12406

Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. (2018) ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 19, 15-30. https://doi.org/10.1186/s12859-018-2129-y

Zhang, Y.M., Williams, J.L. & Lucky, A. (2019) Understanding UCEs: a comprehensive primer on using ultraconserved elements for arthropod phylogenomics. Insect Systematics and Diversity, 3(5), 1-12. https://doi.org/10.1093/isd/ixz016

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...