Long-Term Efficacy and Safety of RNAi-Mediated Virus Resistance in 'HoneySweet' Plum

. 2021 ; 12 () : 726881. [epub] 20211012

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34712254

Interfering RNA technology has been established as an effective strategy to protect plants against viral infection. Despite this success, interfering RNA (RNAi) has rarely been applied due to the regulatory barriers that confront genetically engineered plants and concerns over possible environmental and health risks posed by non-endogenous small RNAs. 'HoneySweet' was developed as a virus-resistant plum variety that is protected by an RNAi-mediated process against Sharka disease caused by the plum pox virus. 'HoneySweet' has been approved for cultivation in the United States but not in countries where the plum pox virus is endemic. In this study, we evaluated the long-term efficacy of virus resistance in 'HoneySweet,' the nature and stability of its sRNA profile, and the potential health risks of consuming 'HoneySweet' plums. Graft-challenged 'HoneySweet' trees carrying large non-transgenic infected limbs remained virus-free after more than 10 years in the field, and the viral sequences from the non-transgenic infected limbs showed no evidence of adaptation to the RNAi-based resistance. Small RNA profiling revealed that transgene-derived sRNA levels were stable across different environments and, on average, were more than 10 times lower than those present in symptom-less fruits from virus-infected trees. Comprehensive 90-day mouse feeding studies showed no adverse health impacts in mice, and there was no evidence for potential siRNA off-target pathologies predicted by comparisons of the most abundant transgene-derived sRNAs to the mouse genome. Collectively, the data confirmed that RNAi provides a highly effective, stable, and safe strategy to combat virus diseases in crop plants.

Zobrazit více v PubMed

Beachy R. N. (1997). Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr. Opin. Biotech. 8, 215–220. 10.1016/S0958-1669(97)80105-X PubMed DOI

Chan S. Y., Snow J. W. (2017). Formidable challenges to the notion of biologically important roles for dietary small RNAs in ingesting mammals. Genes Nutr. 12:13. 10.1186/s12263-017-0561-7 PubMed DOI PMC

Cheng X., Wang A. (2017). The potyvirus silencing suppressor protein VPg mediates degradation of SGS3 via ubiquitination and autophagy pathways. J. Virol. 91, e01478–e01416. 10.1128/JVI.01478-16 PubMed DOI PMC

Davis D. B., Doherty K. R., Delmonte A. J., McNally E. M. (2002). Calcium-sensitive phospholipid binding properties of normal and mutant ferlin C2 domains. J Biol. Chem. 277, 22883–22888. 10.1074/jbc.M201858200 PubMed DOI

Dickinson B., Zhang Y., Petrick J. S., Heck G., Ivashuta S., Marshall W. S. (2013). Lack of detectable oral bioavailability of plant microRNAs after feeding in mice Nat. Biotechnol. 31:965. 10.1038/nbt.2737 PubMed DOI

Fire A., SiQun X., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806. 10.1038/35888 PubMed DOI

García J. A., Glasa M., Cambra M., Candresse T. (2014). Plum pox virus and sharka: a model potyvirus and a major disease. Mol. Plant Pathol. 15, 226–241. 10.1111/mpp.12083 PubMed DOI PMC

Gonsalves D. (1998). Control of papaya ringspot virus in papaya: a case study. Annu. Rev. Phytopathol. 36, 415–437. 10.1146/annurev.phyto.36.1.415 PubMed DOI

Gottula J., Fuchs M. (2009). Toward a quarter century of pathogen-derived resistance and practical approaches to plant virus disease control. Adv. Virus Res. 75, 161–183. 10.1016/S0065-3527(09)07505-8 PubMed DOI

Halloran B. P., Wronski T. J., VonHerzen D. C., Chu V., Xia X., Pingel J. E., et al. . (2010). Dietary dried plum increases bone mass in adult and aged male mice. J. Nutr. 140, 1781–1787. 10.3945/jn.110.124198 PubMed DOI

Hamilton A. J., Baulcombe D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952. 10.1126/science.286.5441.950 PubMed DOI

Hartmann W., Neumüller M. (2006). Breeding for resistance: breeding for Plum pox virus resistant plums (Prunus domestica L.) in Germany. Bull. OEPP 36, 332–336. 10.1111/j.1365-2338.2006.01010.x DOI

He X., Semenov M., Tamai K., Zeng X. (2004). LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131, 1663–1677. 10.1242/dev.01117 PubMed DOI

Heinemann J. A., Agapito-Tenfen S. Z., Carman J. A. (2013). A comparative evaluation of the regulation of GM crops or products containing dsRNA and suggested improvements to risk assessments. Environ. Int. 55, 43–55. 10.1016/j.envint.2013.02.010 PubMed DOI

Ivanov K. I., Eskelin K., Bašić M., De S., Lõhmus A., Varjosalo M., et al. . (2016). Molecular insights into the function of the viral RNA silencing suppressor HCP ro. Plant J. 85, 30–45. 10.1111/tpj.13088 PubMed DOI

Jarošová J., Gadiou S., Polák J., Ravelonandro M., Scorza R., Kumar J. K. (2010). Evaluation of transgenic Prunus domestica L., clone C5 resistance to Plum pox virus. Julius-Kühn-Archiv 427:330.

Leonard S. P., Powell J. E., Perutka J., Geng P., Heckmann L. C., Horak R. D., et al. . (2020). Engineered symbionts activate honey bee immunity and limit pathogens. Science 367, 573–576. 10.1126/science.aax9039 PubMed DOI PMC

Liu C. C., Prior J., Piwnica-Worms D., Bu G., et al. . (2010). LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy. Proc. Natl. Acad. Sci. USA. 107, 5136–5141. 10.1073/pnas.0911220107 PubMed DOI PMC

Liu C. C., Tsai C. W., Deak F., Rogers J., Penuliar M., Sung Y. M., et al. . (2014). Deficiency in LRP6-mediated Wnt signaling contributes to synaptic abnormalities and amyloid pathology in Alzheimer's disease. Neuron 84, 63–77. 10.1016/j.neuron.2014.08.048 PubMed DOI PMC

Liu Y.-C., Chen W. L., Kung W.-H., Huang H.-D. (2017). Plant miRNAs found in human circulating system provide evidences of cross kingdom RNAi. BMC Genomics 18, 112. 10.1186/s12864-017-3502-3 PubMed DOI PMC

Mat Jalaluddin N. S., Othman R. Y., Harikrishna J. A. (2018). Global trends in research and commercialization of exogenous and endogenous RNAi technologies for crops. Crit. Rev. Biotechnol. 39, 1–12. 10.1080/07388551.2018.1496064 PubMed DOI

Petrick J. S., Moore W. M., Heydens W. F., Koch M. S., Sherman J. H., Lemke S. L. (2015). A 28-day oral toxicity evaluation of small interfering RNAs and a long double-stranded RNA targeting vacuolar ATPase in mice. Regul. Toxicol. Pharmacol. 71, 8–23. 10.1016/j.yrtph.2014.10.016 PubMed DOI

Polák J., Kundu J. K., Krška B., Beoni E., Komínek P., Pívalová J., et al. . (2017). Transgenic plum Prunus domestica L., clone C5 (cv. HoneySweet) for protection against sharka disease. J. Integr. Agric. 16, 516–522. 10.1016/S2095-3119(16)61491-0 DOI

Rashdan N. A., Rutsch F., Kempf H., Váradi A., Lefthériotis G., MacRae V. E. (2016). New perspectives on rare connective tissue calcifying diseases. Curr. Opin. Pharmacol. 28, 14–23. 10.1016/j.coph.2016.02.002 PubMed DOI

Rimbaud L., Dallot S., Gottwald T., Decroocq V., Jacquot E., Soubeyrand S., et al. . (2015). Sharka epidemiology and worldwide management strategies: learning lessons to optimize disease control in perennial plants. Annu. Rev. Phytopathol. 53, 357–378. 10.1146/annurev-phyto-080614-120140 PubMed DOI

Rodamilans B., Valli A., Mingot A., San León D., López-Moya J. J., García J. A. (2018). An atypical RNA silencing suppression strategy provides a snapshot of the evolution of sweet potato-infecting potyviruses. Sci. Rep. 8, 1–10. 10.1038/s41598-018-34358-y PubMed DOI PMC

Ruiz M. T., Voinnet O., Baulcombe D. C. (1998). Initiation and maintenance of virus-induced gene silencing. Plant Cell 10, 937–946. 10.1105/tpc.10.6.937 PubMed DOI PMC

Scorza R., Callahan A., Levy L., Damsteegt V., Webb K., Ravelonandro M. (2001). Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the Plum pox potyvirus coat protein gene. Trans. Res. 10, 201–209. 10.1023/A:1016644823203 PubMed DOI

Scorza R., Ravelonandro M., Callahan A., Zagrai I., Polak J., Malinowski T., et al. . (2016). ‘HoneySweet’(C5), the first genetically engineered plum pox virus–resistant Plum (Prunus domestica L.) Cultivar. HortScience 51, 601–603. 10.21273/HORTSCI.51.5.601 DOI

Scorza R., Ravelonandro M., Callahan A. M., Cordts J. M., Fuchs M., Dunez J., et al. . (1994). Transgenic plums (Prunus domestica L.) express the plum pox virus coat protein gene. Plant Cell Rep. 14, 18–22. 10.1007/BF00233291 PubMed DOI

Singh K., Kundu J. K. (2017), Variation in coat protein sequence of Wheat streak mosaic virus among crop no crop hosts. Crop Pasture Sci. 68, 328–336. 10.1071/CP17025 DOI

Singh K., Zouhar M., Mazakova J., Rysanek P. (2014), Genome Wide Identification of the Immunophilin Gene Family in Leptosphaeria maculans: a causal agent of blackleg disease in oilseed rape (Brassica napus). OMICS. 18, 645–657. 10.1089/omi.2014.0081 PubMed DOI PMC

Tepfer M., Jacquemond M., García-Arenal F. (2015). A critical evaluation of whether recombination in virus-resistant transgenic plants will lead to the emergence of novel viral diseases. New Phytol. 207, 536–541. 10.1111/nph.13358 PubMed DOI

The International Peach Genome Initiative (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 45, 487–494. 10.1038/ng.2586 PubMed DOI

Tosar P., Rovira C., Naya H., Cayota A. (2014). Mining of public sequencing databases supports a non-dietary origin for putative foreign miRNAs: underestimated effects of contamination in NGS. RNA 20, 754–757. 10.1261/rna.044263.114 PubMed DOI PMC

van Meurs J. B., Trikalinos T. A., Ralston S. H., Balcells S., Brandi M. L., Brixen K., et al. . (2008). Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA 299, 1277–1290. 10.1001/jama.299.11.1277 PubMed DOI PMC

Vilanova S., Romero C., Abbott A. G., Llacer G., Badenes M. L. (2003). An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits. Theor Appl Genet 107, 239–247. 10.1007/s00122-003-1243-y PubMed DOI

Zhang J., Khan S. A., Heckel D. G., Bock R. (2017). Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends Biotechnol. 35, pp.871–882. 10.1016/j.tibtech.2017.04.009 PubMed DOI

Zhang L., Hou D., Chen X., Li D., Zhu L., Zhang Y., et al. . (2012). Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 22, 107–126. 10.1038/cr.2011.158 PubMed DOI PMC

Zhang Y., Wiggins B. E., Lawrence C., Petrick J., Ivashuta S., Heck G. (2012). Analysis of plant-derived miRNAs in animal small RNA datasets. BMC Genomics 13:381. 10.1186/1471-2164-13-381 PubMed DOI PMC

Zuriaga E., Soriano J. M., Zhebentyayeva T., Romero C., Dardick C., Cañizares J., et al. . (2013). Genomic analysis reveals MATH gene(s) as candidate(s) for plum pox virus (PPV) resistance in apricot (Prunus armeniaca L.). Mol. Plant Path. 14, 663–677. 10.1111/mpp.12037 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...