Antimicrobial, antioxidant and cytotoxic properties of Chenopodium glaucum L
Status odvoláno Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, odvolaná publikace
PubMed
34714855
PubMed Central
PMC8555819
DOI
10.1371/journal.pone.0255502
PII: PONE-D-21-06275
Knihovny.cz E-zdroje
- MeSH
- Acinetobacter baumannii účinky léků růst a vývoj MeSH
- antibakteriální látky farmakologie MeSH
- antifungální látky farmakologie MeSH
- antioxidancia farmakologie MeSH
- Aspergillus účinky léků růst a vývoj MeSH
- Chenopodium chemie MeSH
- cytotoxiny farmakologie MeSH
- Escherichia coli účinky léků růst a vývoj MeSH
- fytonutrienty farmakologie MeSH
- Klebsiella pneumoniae účinky léků růst a vývoj MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- nádorové buněčné linie MeSH
- nádory plic farmakoterapie MeSH
- protinádorové látky farmakologie MeSH
- rostlinné extrakty farmakologie MeSH
- Staphylococcus epidermidis účinky léků růst a vývoj MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- odvolaná publikace MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- antifungální látky MeSH
- antioxidancia MeSH
- cytotoxiny MeSH
- fytonutrienty MeSH
- protinádorové látky MeSH
- rostlinné extrakty MeSH
We evaluated phytochemical composition, antibacterial, antifungal, anti-oxidant and cytotoxic properties of aqueous (water) and organic extracts (methanol, ethyl acetate and n-hexane) of Chenopodium glaucum. Highest phenolic content 45 mg gallic acid equivalents (GAE)/g d.w was found in aqueous extract followed by ethyl acetate (41mg GAE/g d.w) and methanol extract (34.46 mg GAE/g d.w). Antibacterial potential of aqueous and organic extracts of C. glaucum was examined against Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli and Staphylococcus epidermidis. The aqueous, methanolic, ethyl acetate, and n-hexane extract showed antibacterial activity against A. baumannii, K. pneumoniae, E. coli and S. epidermidis. However, against A. baumannii significantly higher inhibition zone (19 mm and 18.96 mm respectively) was shown by ethyl acetate and methanol extracts. Aqueous extract possessed highest growth inhibition (11 mm) against E. coli. Aqueous, ethyl acetate and methanol extracts showed 9 mm, 10 mm, and 10.33 mm zone of inhibition against the K. pneumoniae. For antifungal activity, the extracts were less effective against Aspergillus niger but showed strong antifungal activity against Aspergillus flavus (A. flavus). The antioxidant activity was measured as DPPH (2, 2-diphenyl-1-picrylhydrazyl), H2O2 and ABTS (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity of free radicals. All the organic extracts of C. glaucum possessed ABTS, DPPH and H2O2 scavenging properties. The highest cytotoxic activity measured as half maximal inhibitory concentration (IC50) against human lungs carcinoma cells was recorded for methanolic (IC50 = 16 μg/mL) and n-hexane (IC50 = 25 μg/mL) extracts, respectively. The Gas chromatography-mass spectrometry (GC-MS) analysis showed 4 major and 26 minor compounds in n-hexane extract and 4 major and 7 minor compounds in methanol extract of the C. glaucum. It is concluded that aqueous and organic extracts of C. glaucum would be potential therapeutic agents and could be exploited on a pilot scale to treat human pathogenic diseases.
Department of Agronomy The University of Haripur Haripur Pakistan
Department of Biology College of Science Taif University Taif Saudi Arabia
Department of Biotechnology College of Science Taif University Taif Saudi Arabia
Department of Botany University of Science and Technology Bannu Bannu KP Pakistan
Department of Horticulture Northeast Agricultural University Harbin China
Zobrazit více v PubMed
Aziz MA, Adnan M, Khan AH, Shahat AA, Al-Said MS, Ullah R. Traditional uses of medicinal plants practiced by the indigenous communities at Mohmand Agency, FATA, Pakistan. J Ethnobiol Ethnomed. 2018;14: 1–16. doi: 10.1186/s13002-017-0199-y PubMed DOI PMC
Rababah TM, Hettiarachchy NS, Horax R. Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin E, and tert-butylhydroquinone. J Agric Food Chem. 2004;52: 5183–5186. doi: 10.1021/jf049645z PubMed DOI
Sahreen S, Khan MR, Khan RA, Shah NA. Estimation of flavoniods, antimicrobial, antitumor and anticancer activity of Carissa opaca fruits. BMC Complement Altern Med. 2014;14: 40. doi: 10.1186/1472-6882-14-40 PubMed DOI PMC
Venugopala KN, Rashmi V, Odhav B. Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int. 2013;2013. doi: 10.1155/2013/963248 PubMed DOI PMC
Khan AM, Qureshi RA, Ullah F, Gilani SA, Nosheen A, Sahreen S, et al.. Phytochemical analysis of selected medicinal plants of Margalla hills and surroundings. J Med Plant Res. 2011;5: 6017–6023. doi: 10.5897/JMPR11.869 DOI
Sahreen S, Khan MR, Khan RA, Hadda T Ben. Evaluation of phytochemical content, antimicrobial, cytotoxic and antitumor activities of extract from Rumex hastatus D. Don roots. {BMC} Complement Altern Med. 2015;15. doi: 10.1186/s12906-015-0736-y PubMed DOI PMC
Medical Russo T. and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect. 2003;5: 449–456. doi: 10.1016/s1286-4579(03)00049-2 PubMed DOI
Villers D. Nosocomial Acinetobacter baumannii Infections: Microbiological and Clinical Epidemiology. Ann Intern Med. 1998;129: 182. doi: 10.7326/0003-4819-129-3-199808010-00003 PubMed DOI
Effah CY, Sun T, Liu S, Wu Y. Klebsiella pneumoniae: An increasing threat to public health. Ann Clin Microbiol Antimicrob. 2020;19: 1–9. doi: 10.1186/s12941-019-0343-8 PubMed DOI PMC
Vuong C, Otto M. Staphylococcus epidermidis infections. Microbes Infect. 2002;4: 481–489. doi: 10.1016/s1286-4579(02)01563-0 PubMed DOI
Araiza J, Canseco P, Bonifaz A. Otomycosis: Clinical and mycological study of 97 cases | Otomycose: Étude clinique et mycologique de 97 cas. Rev Laryngol Otol Rhinol. 2006;127: 251–254. PubMed
Loudon KW, Coke AP, Burnie JP, Shaw AJ, Oppenheim BA, Morris CQ. Kitchens as a source of Aspergillus niger infection. J Hosp Infect. 1996;32: 191–198. doi: 10.1016/s0195-6701(96)90145-0 PubMed DOI
Klich MA. Aspergillus flavus: the major producer of aflatoxin. Mol Plant Pathol. 2007;8: 713–722. doi: 10.1111/j.1364-3703.2007.00436.x PubMed DOI
Cheesman MJ, Ilanko A, Blonk B, Cock IE. Developing new antimicrobial therapies: Are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacognosy Reviews. 2017. pp. 57–72. doi: 10.4103/phrev.phrev_21_17 PubMed DOI PMC
Gupta PD, Birdi TJ. Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med. 2017;8: 266–275. doi: 10.1016/j.jaim.2017.05.004 PubMed DOI PMC
Dubreuil JD. Fruit extracts to control pathogenic Escherichia coli: A sweet solution. Heliyon. 2020;6: e03410. doi: 10.1016/j.heliyon.2020.e03410 PubMed DOI PMC
Refaat J, Desoky SY, Ramadan MA, Kamel MS. Bombacaceae: A phytochemical review. Pharm Biol. 2012;51: 100–130. doi: 10.3109/13880209.2012.698286 PubMed DOI
Nelson L, Tighe A, Golder A, Littler S, Bakker B, Moralli D, et al.. A living biobank of ovarian cancer ex vivo models reveals profound mitotic heterogeneity. Nat Commun. 2020;11: 1–18. doi: 10.1038/s41467-019-13993-7 PubMed DOI PMC
Chanda S, Nagani K. In vitro and in vivo methods for anticancer activity evaluation and some Indian medicinal plants possessing anticancer properties: an overview. J Pharmacogn Phytochem. 2013;2.
Sak A, Stuschke M, Groneberg M, Kübler D, Pöttgen C, Eberhardt WEE. Inhibiting the aurora B kinase potently suppresses repopulation during fractionated irradiation of human lung cancer cell lines. Int J Radiat Oncol Biol Phys. 2012;84: 492–499. doi: 10.1016/j.ijrobp.2011.12.021 PubMed DOI
Nguyen TMH, Le HL, Ha TT, Bui BH, Le NT, Nguyen VH, et al.. Inhibitory effect on human platelet aggregation and coagulation and antioxidant activity of C. edulis Ker Gawl rhizome and its secondary metabolites. J Ethnopharmacol. 2020;263: 113136. doi: 10.1016/j.jep.2020.113136 PubMed DOI
Agarwal G, Carcache PJB, Addo EM, Kinghorn AD. Current status and contemporary approaches to the discovery of antitumor agents from higher plants. Biotechnol Adv. 2020;38: 107337. doi: 10.1016/j.biotechadv.2019.01.004 PubMed DOI PMC
Ahmad B, Jan Q, Basher S, Choudhry MI, Nisar M. Phytochemical Evaluation of Chenopodium murale Linn. Asian J Plant Sci. 2003;2: 1072–1078. doi: 10.3923/ajps.2003.1072.1078 DOI
Laghari AH, Memon S, Nelofar A, Khan KM, Yasmin A. Determination of free phenolic acids and antioxidant activity of methanolic extracts obtained from fruits and leaves of Chenopodium album. Food Chem. 2011;126: 1850–1855. doi: 10.1016/j.foodchem.2010.11.165 PubMed DOI
Swain T, Hillis WE. The phenolic constituents of Prunus domestica. I.-The quantitative analysis of phenolic constituents. J Sci Food Agric. 1959;10: 63–68. doi: 10.1002/jsfa.2740100110 DOI
Mbata TI, Debiao LU, Saikia A. Antibacterial activity of the crude extract of Chinese green tea (Camellia sinensis) on Listeria monocytogenes. African J Biotechnol. 2008;7.
Choudhary MI, Dur-e-Shahwar , Parveen Z, Jabbar A, Ali I, Atta-Ur-Rahman. Antifungal steroidal lactones from Withania coagulance. Phytochemistry. 1995;40: 1243–1246. doi: 10.1016/0031-9422(95)00429-b PubMed DOI
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26: 1231–1237. doi: 10.1016/s0891-5849(98)00315-3 PubMed DOI
Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci Technol. 1995;28: 25–30. doi: 10.1016/s0023-6438(95)80008-5 DOI
Ruch RJ, Cheng S, Klaunig JE. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis. 1989;10: 1003–1008. doi: 10.1093/carcin/10.6.1003 PubMed DOI
Naz R, Roberts TH, Bano A, Nosheen A, Yasmin H, Hassan MN, et al.. GC-MS analysis, antimicrobial, antioxidant, antilipoxygenase and cytotoxic activities of Jacaranda mimosifolia methanol leaf extracts and fractions. PLoS One. 2020;15: e0236319. doi: 10.1371/journal.pone.0236319 PubMed DOI PMC
Steel RG, Torrie JH, Dickey DA. Principles and Procedures of Statistics: A Biometrical Approach. 3rd ed. Singapore: McGraw Hill Book International Co.; 1997.
Nejad BS, Deokule SS. Anti-dermatophytic activity of Drynaria quercifolia (L.) J. Smith. Jundishapur J Microbiol. 2009;2: 25–30.
Kaur N, Kaur G. Effect of processing on nutritional and antinutritional composition of bathua (Chenopodium album) leaves. J Appl Nat Sci. 2018;10: 1149–1155.
Ajaib M, Hussain T, Farooq S, Ashiq M. Analysis of antimicrobial and antioxidant activities of Chenopodium ambrosioides: An ethnomedicinal plant. J Chem. 2016;2016. doi: 10.1155/2016/3190891 PubMed DOI PMC
Ajaib M, Haider SK, Zikrea A, Siddiqui MF. Ethnobotanical Studies of Herbs of Agra Valley Parachinar, Upper Kurram Agency, Pakistan. Int J Biol Biotech. 2014;11: 71–83.
Pu Z-H, Zhang Y-Q, Yin Z-Q, Jiao XU, Jia R-Y, Yang LU, et al.. Antibacterial activity of 9-octadecanoic acid-hexadecanoic acid-tetrahydrofuran-3, 4-diyl ester from neem oil. Agric Sci China. 2010;9: 1236–1240.
Ali-Shtayeh MS, Ghdeib SIA. Antifungal activity of plant extracts against dermatophytes. Mycoses. 1999;42: 665–672. doi: 10.1046/j.1439-0507.1999.00499.x PubMed DOI
Ozsoy N, Can A, Yanardag R, Akev N. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem. 2008;110: 571–583. doi: 10.1016/j.foodchem.2008.02.037 DOI
Jayaprakasha GK, Singh RP, Sakariah KK. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 2001;73: 285–290. doi: 10.1016/s0308-8146(00)00298-3 DOI
Lee Y-L, Huang G-W, Liang Z-C, Mau J-L. Antioxidant properties of three extracts from Pleurotus citrinopileatus. LWT—Food Sci Technol. 2007;40: 823–833. doi: 10.1016/j.lwt.2006.04.002 DOI
Pervez K, Ullah F, Mehmood S, Khattak A. Effect of Moringa oleifera Lam. leaf aqueous extract on growth attributes and cell wall bound phenolics accumulation in maize (Zea mays L.) under drought stress. Kuwait J Sci. 2017;44: 110–118.
Kareem SO, Akpan I, Ojo OP. Antimicrobial activities of Calotropis procera on selected pathogenic microorganisms. African J Biomed Res. 2008;11: 105–110. doi: 10.4314/ajbr.v11i1.50674 DOI
Rice-evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res. 1995;22: 375–383. doi: 10.3109/10715769509145649 PubMed DOI
Hajji M, Jarraya R, Lassoued I, Masmoudi O, Damak M, Nasri M. GC/MS and LC/MS analysis, and antioxidant and antimicrobial activities of various solvent extracts from Mirabilis jalapa tubers. Process Biochem. 2010;45: 1486–1493. doi: 10.1016/j.procbio.2010.05.027 DOI
Saeed Z, Iqbal S, Younas U, Pervaiz M, Bukhari SM, Zaidi A. Variation in antioxidant potential of Vigna unguiculata grown in pure and amended soil. Kuwait J Sci. 2020;47: 2–14.
Triantaphyllou K, Blekas G, Boskou D. Antioxidative properties of water extracts obtained from herbs of the species Lamiaceae. Int J Food Sci Nutr. 2001;52: 313–317. doi: 10.1080/09637480120057512 PubMed DOI
Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B. Effect of Feronia limonia on mosquito larvae. Fitoterapia. 2000;71: 553–555. doi: 10.1016/s0367-326x(00)00164-7 PubMed DOI
Ogunlesi M, Okiei W, Ofor E, Osibote AE. Analysis of the essential oil from the dried leaves of Euphorbia hirta Linn (Euphorbiaceae), a potential medication for asthma. African J Biotechnol. 2009;8: 7042–7050. doi: 10.5897/AJB09.1324 DOI
Preethi R, Devanathan VV, Loganathan M. Antimicrobial and Antioxidant Efficacy of Some Medicinal Plants Against Food Borne Pathogens. Adv Biol Res (Rennes). 2010;4: 122–125.
Mulyaningsih S, Sporer F, Reichling J, Wink M. Antibacterial activity of essential oils from Eucalyptus and of selected components against multidrug-resistant bacterial pathogens. Pharm Biol. 2011;49: 893–899. doi: 10.3109/13880209.2011.553625 PubMed DOI
Ogunlesi M, Okiei W, Ofor E, Eniola A. Medicinal and pesticidal potentials of the constituents of the essential oil from Adenia cissampeloides leaves. Kem u Ind. 2019;68: 7–21. doi: 10.15255/kui.2018.027 DOI
Paudel P, Satyal P, Khadka G, Setzer WN. Leaf Essential Oil Composition of Kyllinga brevifolia Rottb. from Nepal. J Essent Oil Bear Plants. 2012;15: 854–857. doi: 10.1080/0972060x.2012.10644131 DOI
Pavithra PS, Mehta A, Verma RS. Aromadendrene oxide 2, induces apoptosis in skin epidermoid cancer cells through ROS mediated mitochondrial pathway. Life Sci. 2018;197: 19–29. doi: 10.1016/j.lfs.2018.01.029 PubMed DOI