Ferroelectric 2D ice under graphene confinement

. 2021 Nov 01 ; 12 (1) : 6291. [epub] 20211101

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34725367

Grantová podpora
APES (No 759721) EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
e-INFRA CZ (ID:90140) Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
(108-2112-M-001-040-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)

Odkazy

PubMed 34725367
PubMed Central PMC8560911
DOI 10.1038/s41467-021-26589-x
PII: 10.1038/s41467-021-26589-x
Knihovny.cz E-zdroje

We here report on the direct observation of ferroelectric properties of water ice in its 2D phase. Upon nanoelectromechanical confinement between two graphene layers, water forms a 2D ice phase at room temperature that exhibits a strong and permanent dipole which depends on the previously applied field, representing clear evidence for ferroelectric ordering. Characterization of this permanent polarization with respect to varying water partial pressure and temperature reveals the importance of forming a monolayer of 2D ice for ferroelectric ordering which agrees with ab-initio and molecular dynamics simulations conducted. The observed robust ferroelectric properties of 2D ice enable novel nanoelectromechanical devices that exhibit memristive properties. A unique bipolar mechanical switching behavior is observed where previous charging history controls the transition voltage between low-resistance and high-resistance state. This advance enables the realization of rugged, non-volatile, mechanical memory exhibiting switching ratios of 106, 4 bit storage capabilities and no degradation after 10,000 switching cycles.

Zobrazit více v PubMed

Bernal JD, Fowler RH. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1933;1:515–548. doi: 10.1063/1.1749327. DOI

Bramwell ST. Condensed-matter science: Ferroelectric ice. Nature. 1999;397:212. doi: 10.1038/16594. DOI

Zhu, W. D. et al. Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram. Nat Commun10, ARTN 1925 10.1038/s41467-019-09950-z (2019). PubMed PMC

Chen C, et al. Graphene mechanical oscillators with tunable frequency. Nat. Nanotechnol. 2013;8:923–927. doi: 10.1038/nnano.2013.232. PubMed DOI

Holt JK, et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science. 2006;312:1034–1037. doi: 10.1126/science.1126298. PubMed DOI

Berezhkovskii A, Hummer G. Single-file transport of water molecules through a carbon nanotube. Phys. Rev. Lett. 2002;89:064503. doi: 10.1103/PhysRevLett.89.064503. PubMed DOI

Algara-Siller G, et al. Square ice in graphene nanocapillaries. Nature. 2015;519:443. doi: 10.1038/nature14295. PubMed DOI

Kaneko T, et al. Phase behaviors of deeply supercooled bilayer water unseen in bulk water. Proc. Natl Acad. Sci. USA. 2018;115:4839–4844. doi: 10.1073/pnas.1802342115. PubMed DOI PMC

Rauf A, Schilo A, Severin N, Sokolov IM, Rabe JP. Non-monotonous Wetting of Graphene–Mica and MoS2–Mica Interfaces with a Molecular Layer of Water. Langmuir. 2018;34:15228–15237. doi: 10.1021/acs.langmuir.8b03182. PubMed DOI

Qian Z, Wei G. Electric-field-induced phase transition of confined water nanofilms between two graphene sheets. J. Phys. Chem. A. 2014;118:8922–8928. doi: 10.1021/jp500989t. PubMed DOI

Qiu H, Guo WL. Electromelting of confined monolayer ice. Phys. Rev. Lett. 2013;110:5. PubMed

Xu K, Heath JR. Contact with what? Nat. Mater. 2013;12:872. doi: 10.1038/nmat3763. PubMed DOI

Zhou W, et al. The observation of square ice in graphene questioned. Nature. 2015;528:E1. doi: 10.1038/nature16145. PubMed DOI

Yang D-S, Zewail AH. Ordered water structure at hydrophobic graphite interfaces observed by 4D, ultrafast electron crystallography. Proc. Natl Acad. Sci. 2009;106:4122–4126. doi: 10.1073/pnas.0812409106. PubMed DOI PMC

Xu K, Cao P, Heath JR. Graphene visualizes the first water adlayers on mica at ambient conditions. Science. 2010;329:1188–1191. doi: 10.1126/science.1192907. PubMed DOI

He KT, Wood JD, Doidge GP, Pop E, Lyding JW. Scanning tunneling microscopy study and nanomanipulation of graphene-coated water on mica. Nano Lett. 2012;12:2665–2672. doi: 10.1021/nl202613t. PubMed DOI

Verdaguer A, Segura JJ, López-Mir L, Sauthier G, Fraxedas J. Communication: growing room temperature ice with graphene. J. Chem. Phys. 2013;138:121101. doi: 10.1063/1.4798941. PubMed DOI

Clark N, Oikonomou A, Vijayaraghavan A. Ultrafast quantitative nanomechanical mapping of suspended graphene. Phys. Status Solidi B. 2013;250:2672–2677. doi: 10.1002/pssb.201300137. DOI

Wong CL, Annamalai M, Wang ZQ, Palaniapan M. Characterization of nanomechanical graphene drum structures. J. Micromech. Microeng. 2010;20:115029. doi: 10.1088/0960-1317/20/11/115029. DOI

Aydin, O. I., Hallam, T., Thomassin, J. L., Mouis, M. & Duesberg, G. Ultimate CMOS and Alternative Technologies in IEEE Ultim. Integr. Silicon. 33–36.

Lee, J. E., Ahn, G., Shim, J., Lee, Y. S. & Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat Commun3, ARTN 1024 10.1038/ncomms2022 (2012). PubMed

Parkkinen P, Riikonen S, Halonen L. Ice XI: not that ferroelectric. J. Phys. Chem. C. 2014;118:26264–26275. doi: 10.1021/jp510009m. DOI

Jasulaneca L, Kosmaca J, Meija R, Andzane J, Erts D. Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches - materials solutions and operational conditions. Beilstein J. Nanotech. 2018;9:271–300. doi: 10.3762/bjnano.9.29. PubMed DOI PMC

Scott JF. Ferroelectrics go bananas. J. Phys.: Condens. Matter. 2007;20:021001.

Gruverman A, et al. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 2009;9:3539–3543. doi: 10.1021/nl901754t. PubMed DOI

Artemov VG, Volkov AA. Water and ice dielectric spectra scaling at 0 degrees C. Ferroelectrics. 2014;466:158–165. doi: 10.1080/00150193.2014.895216. DOI

de Aquino BRH, Ghorbanfekr-Kalashami H, Neek-Amal M, Peeters FM. Electrostrictive behavior of confined water subjected to GPa pressure. Phys. Rev. B. 2018;97:144111. doi: 10.1103/PhysRevB.97.144111. DOI

Belov AY, Kreher WS. Simulation of microstructure evolution in polycrystalline ferroelectrics–ferroelastics. Acta Materialia. 2006;54:3463–3469. doi: 10.1016/j.actamat.2006.03.038. DOI

Zhu XY, Yuan QZ, Zhao YP. Phase transitions of a water overlayer on charged graphene: from electromelting to electrofreezing. Nanoscale. 2014;6:5432–5437. doi: 10.1039/c3nr06596k. PubMed DOI

Douglass, M. in Reliability, Testing, and Characterization of Mems/Moems II Vol. 4980 1–12 (International Society for Optics and Photonics, 16 January 2003).

Loh OY, Espinosa HD. Nanoelectromechanical contact switches. Nat. Nanotechnol. 2012;7:283–295. doi: 10.1038/nnano.2012.40. PubMed DOI

Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 2010;10:751–758. doi: 10.1021/nl904286r. PubMed DOI

Hsieh Y-P, Shih C-H, Chiu Y-J, Hofmann M. High-throughput graphene synthesis in gapless stacks. Chem. Mater. 2016;28:40–43. doi: 10.1021/acs.chemmater.5b04007. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Using Noncovalent Interactions to Test the Precision of Projector-Augmented Wave Data Sets

. 2023 Dec 12 ; 19 (23) : 8871-8885. [epub] 20231201

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...