Ferroelectric 2D ice under graphene confinement
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APES (No 759721)
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
e-INFRA CZ (ID:90140)
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
(108-2112-M-001-040-MY3
Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
PubMed
34725367
PubMed Central
PMC8560911
DOI
10.1038/s41467-021-26589-x
PII: 10.1038/s41467-021-26589-x
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We here report on the direct observation of ferroelectric properties of water ice in its 2D phase. Upon nanoelectromechanical confinement between two graphene layers, water forms a 2D ice phase at room temperature that exhibits a strong and permanent dipole which depends on the previously applied field, representing clear evidence for ferroelectric ordering. Characterization of this permanent polarization with respect to varying water partial pressure and temperature reveals the importance of forming a monolayer of 2D ice for ferroelectric ordering which agrees with ab-initio and molecular dynamics simulations conducted. The observed robust ferroelectric properties of 2D ice enable novel nanoelectromechanical devices that exhibit memristive properties. A unique bipolar mechanical switching behavior is observed where previous charging history controls the transition voltage between low-resistance and high-resistance state. This advance enables the realization of rugged, non-volatile, mechanical memory exhibiting switching ratios of 106, 4 bit storage capabilities and no degradation after 10,000 switching cycles.
Department of Materials Science and Engineering National Cheng Kung University Tainan 70101 Taiwan
Department of Physics National Taiwan University Taipei 10617 Taiwan
Graduate Institute of Opto Mechatronics National Chung Cheng University Chiayi 62102 Taiwan
Institute for Atomic and Molecular Science Academia Sinica Taipei 10617 Taiwan
Zobrazit více v PubMed
Bernal JD, Fowler RH. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1933;1:515–548. doi: 10.1063/1.1749327. DOI
Bramwell ST. Condensed-matter science: Ferroelectric ice. Nature. 1999;397:212. doi: 10.1038/16594. DOI
Zhu, W. D. et al. Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram. Nat Commun10, ARTN 1925 10.1038/s41467-019-09950-z (2019). PubMed PMC
Chen C, et al. Graphene mechanical oscillators with tunable frequency. Nat. Nanotechnol. 2013;8:923–927. doi: 10.1038/nnano.2013.232. PubMed DOI
Holt JK, et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science. 2006;312:1034–1037. doi: 10.1126/science.1126298. PubMed DOI
Berezhkovskii A, Hummer G. Single-file transport of water molecules through a carbon nanotube. Phys. Rev. Lett. 2002;89:064503. doi: 10.1103/PhysRevLett.89.064503. PubMed DOI
Algara-Siller G, et al. Square ice in graphene nanocapillaries. Nature. 2015;519:443. doi: 10.1038/nature14295. PubMed DOI
Kaneko T, et al. Phase behaviors of deeply supercooled bilayer water unseen in bulk water. Proc. Natl Acad. Sci. USA. 2018;115:4839–4844. doi: 10.1073/pnas.1802342115. PubMed DOI PMC
Rauf A, Schilo A, Severin N, Sokolov IM, Rabe JP. Non-monotonous Wetting of Graphene–Mica and MoS2–Mica Interfaces with a Molecular Layer of Water. Langmuir. 2018;34:15228–15237. doi: 10.1021/acs.langmuir.8b03182. PubMed DOI
Qian Z, Wei G. Electric-field-induced phase transition of confined water nanofilms between two graphene sheets. J. Phys. Chem. A. 2014;118:8922–8928. doi: 10.1021/jp500989t. PubMed DOI
Qiu H, Guo WL. Electromelting of confined monolayer ice. Phys. Rev. Lett. 2013;110:5. PubMed
Xu K, Heath JR. Contact with what? Nat. Mater. 2013;12:872. doi: 10.1038/nmat3763. PubMed DOI
Zhou W, et al. The observation of square ice in graphene questioned. Nature. 2015;528:E1. doi: 10.1038/nature16145. PubMed DOI
Yang D-S, Zewail AH. Ordered water structure at hydrophobic graphite interfaces observed by 4D, ultrafast electron crystallography. Proc. Natl Acad. Sci. 2009;106:4122–4126. doi: 10.1073/pnas.0812409106. PubMed DOI PMC
Xu K, Cao P, Heath JR. Graphene visualizes the first water adlayers on mica at ambient conditions. Science. 2010;329:1188–1191. doi: 10.1126/science.1192907. PubMed DOI
He KT, Wood JD, Doidge GP, Pop E, Lyding JW. Scanning tunneling microscopy study and nanomanipulation of graphene-coated water on mica. Nano Lett. 2012;12:2665–2672. doi: 10.1021/nl202613t. PubMed DOI
Verdaguer A, Segura JJ, López-Mir L, Sauthier G, Fraxedas J. Communication: growing room temperature ice with graphene. J. Chem. Phys. 2013;138:121101. doi: 10.1063/1.4798941. PubMed DOI
Clark N, Oikonomou A, Vijayaraghavan A. Ultrafast quantitative nanomechanical mapping of suspended graphene. Phys. Status Solidi B. 2013;250:2672–2677. doi: 10.1002/pssb.201300137. DOI
Wong CL, Annamalai M, Wang ZQ, Palaniapan M. Characterization of nanomechanical graphene drum structures. J. Micromech. Microeng. 2010;20:115029. doi: 10.1088/0960-1317/20/11/115029. DOI
Aydin, O. I., Hallam, T., Thomassin, J. L., Mouis, M. & Duesberg, G. Ultimate CMOS and Alternative Technologies in IEEE Ultim. Integr. Silicon. 33–36.
Lee, J. E., Ahn, G., Shim, J., Lee, Y. S. & Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat Commun3, ARTN 1024 10.1038/ncomms2022 (2012). PubMed
Parkkinen P, Riikonen S, Halonen L. Ice XI: not that ferroelectric. J. Phys. Chem. C. 2014;118:26264–26275. doi: 10.1021/jp510009m. DOI
Jasulaneca L, Kosmaca J, Meija R, Andzane J, Erts D. Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches - materials solutions and operational conditions. Beilstein J. Nanotech. 2018;9:271–300. doi: 10.3762/bjnano.9.29. PubMed DOI PMC
Scott JF. Ferroelectrics go bananas. J. Phys.: Condens. Matter. 2007;20:021001.
Gruverman A, et al. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 2009;9:3539–3543. doi: 10.1021/nl901754t. PubMed DOI
Artemov VG, Volkov AA. Water and ice dielectric spectra scaling at 0 degrees C. Ferroelectrics. 2014;466:158–165. doi: 10.1080/00150193.2014.895216. DOI
de Aquino BRH, Ghorbanfekr-Kalashami H, Neek-Amal M, Peeters FM. Electrostrictive behavior of confined water subjected to GPa pressure. Phys. Rev. B. 2018;97:144111. doi: 10.1103/PhysRevB.97.144111. DOI
Belov AY, Kreher WS. Simulation of microstructure evolution in polycrystalline ferroelectrics–ferroelastics. Acta Materialia. 2006;54:3463–3469. doi: 10.1016/j.actamat.2006.03.038. DOI
Zhu XY, Yuan QZ, Zhao YP. Phase transitions of a water overlayer on charged graphene: from electromelting to electrofreezing. Nanoscale. 2014;6:5432–5437. doi: 10.1039/c3nr06596k. PubMed DOI
Douglass, M. in Reliability, Testing, and Characterization of Mems/Moems II Vol. 4980 1–12 (International Society for Optics and Photonics, 16 January 2003).
Loh OY, Espinosa HD. Nanoelectromechanical contact switches. Nat. Nanotechnol. 2012;7:283–295. doi: 10.1038/nnano.2012.40. PubMed DOI
Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 2010;10:751–758. doi: 10.1021/nl904286r. PubMed DOI
Hsieh Y-P, Shih C-H, Chiu Y-J, Hofmann M. High-throughput graphene synthesis in gapless stacks. Chem. Mater. 2016;28:40–43. doi: 10.1021/acs.chemmater.5b04007. DOI
Using Noncovalent Interactions to Test the Precision of Projector-Augmented Wave Data Sets