Potent Anti-SARS-CoV-2 Activity by the Natural Product Gallinamide A and Analogues via Inhibition of Cathepsin L
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
U01 TW006634
FIC NIH HHS - United States
PubMed
34730959
PubMed Central
PMC8577376
DOI
10.1021/acs.jmedchem.1c01494
Knihovny.cz E-zdroje
- MeSH
- antivirové látky chemická syntéza chemie farmakologie MeSH
- biologické přípravky chemická syntéza chemie farmakologie MeSH
- buňky A549 MeSH
- Cercopithecus aethiops MeSH
- COVID-19 metabolismus MeSH
- farmakoterapie COVID-19 * MeSH
- inhibitory cysteinových proteinas chemická syntéza chemie farmakologie MeSH
- kathepsin L antagonisté a inhibitory metabolismus MeSH
- kationické antimikrobiální peptidy chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- molekulární konformace MeSH
- proteomika MeSH
- SARS-CoV-2 účinky léků MeSH
- Vero buňky MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- antivirové látky MeSH
- biologické přípravky MeSH
- CTSL protein, human MeSH Prohlížeč
- gallinamide A MeSH Prohlížeč
- inhibitory cysteinových proteinas MeSH
- kathepsin L MeSH
- kationické antimikrobiální peptidy MeSH
Cathepsin L is a key host cysteine protease utilized by coronaviruses for cell entry and is a promising drug target for novel antivirals against SARS-CoV-2. The marine natural product gallinamide A and several synthetic analogues were identified as potent inhibitors of cathepsin L with IC50 values in the picomolar range. Lead molecules possessed selectivity over other cathepsins and alternative host proteases involved in viral entry. Gallinamide A directly interacted with cathepsin L in cells and, together with two lead analogues, potently inhibited SARS-CoV-2 infection in vitro, with EC50 values in the nanomolar range. Reduced antiviral activity was observed in cells overexpressing transmembrane protease, serine 2 (TMPRSS2); however, a synergistic improvement in antiviral activity was achieved when combined with a TMPRSS2 inhibitor. These data highlight the potential of cathepsin L as a COVID-19 drug target as well as the likely need to inhibit multiple routes of viral entry to achieve efficacy.
Kirby Institute University of New South Wales Sydney NSW2052 Australia
School of Chemistry The University of Sydney Sydney NSW2006 Australia
Zobrazit více v PubMed
World Health Organization . WHO Director-General’s opening remarks at the media briefing on COVID-19. 2020.
Krammer F. SARS-CoV-2 vaccines in development. Nature 2020, 586, 516–527. 10.1038/s41586-020-2798-3. PubMed DOI
Polack F. P.; Thomas S. J.; Kitchin N.; Absalon J.; Gurtman A.; Lockhart S.; Perez J. L.; Pérez Marc G.; Moreira E. D.; Zerbini C.; Bailey R.; Swanson K. A.; Roychoudhury S.; Koury K.; Li P.; Kalina W. V.; Cooper D.; Frenck R. W.; Hammitt L. L.; Türeci Ö.; Nell H.; Schaefer A.; Ünal S.; Tresnan D. B.; Mather S.; Dormitzer P. R.; Şahin U.; Jansen K. U.; Gruber W. C. Safety and efficacy of the BNT162b2 mRNA Covid-19. N. Engl. J. Med. 2020, 383, 2603–2615. 10.1056/NEJMoa2034577. PubMed DOI PMC
Voysey M.; Clemens S. A. C.; Madhi S. A.; Weckx L. Y.; Folegatti P. M.; Aley P. K.; Angus B.; Baillie V. L.; Barnabas S. L.; Bhorat Q. E.; Bibi S.; Briner C.; Cicconi P.; Collins A. M.; Colin-Jones R.; Cutland C. L.; Darton T. C.; Dheda K.; Duncan C. J. A.; Emary K. R. W.; Ewer K. J.; Fairlie L.; Faust S. N.; Feng S.; Ferreira D. M.; Finn A.; Goodman A. L.; Green C. M.; Green C. A.; Heath P. T.; Hill C.; Hill H.; Hirsch I.; Hodgson S. H. C.; Izu A.; Jackson S.; Jenkin D.; Joe C. C. D.; Kerridge S.; Koen A.; Kwatra G.; Lazarus R.; Lawrie A. M.; Lelliott A.; Libri V.; Lillie P. J.; Mallory R.; Mendes A. V. A.; Milan E. P.; Minassian A. M.; McGregor A.; Morrison H.; Mujadidi Y. F.; Nana A.; O’Reilly P. J.; Padayachee S. D.; Pittella A.; Plested E.; Pollock K. M.; Ramasamy M. N.; Rhead S.; Schwarzbold A. V.; Singh N.; Smith A.; Song R.; Snape M. D.; Sprinz E.; Sutherland R. K.; Tarrant R.; Thomson E. C.; Török M. E.; Toshner M.; Turner D. P. J.; Vekemans J.; Villafana T. L.; Watson M. E. E.; Williams C. J.; Douglas A. D.; Hill A. V. S.; Lambe T.; Gilbert S. C.; Pollard A. J. on behalf of the Oxford COVID Vaccine Trial Group. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. PubMed PMC
Poland G. A.; Ovsyannikova I. G.; Kennedy R. B. SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates. Lancet 2020, 396, 1595–1606. 10.1016/S0140-6736(20)32137-1. PubMed DOI PMC
Beigel J. H.; Tomashek K. M.; Dodd L. E.; Mehta A. K.; Zingman B. S.; Kalil A. C.; Hohmann E.; Chu H. Y.; Luetkemeyer A.; Kline S.; Lopez de Castilla D.; Finberg R. W.; Dierberg K.; Tapson V.; Hsieh L.; Patterson T. F.; Paredes R.; Sweeney D. A.; Short W. R.; Touloumi G.; Lye D. C.; Ohmagari N.; Oh M.-d.; Ruiz-Palacios G. M.; Benfield T.; Fätkenheuer G.; Kortepeter M. G.; Atmar R. L.; Creech C. B.; Lundgren J.; Babiker A. G.; Pett S.; Neaton J. D.; Burgess T. H.; Bonnett T.; Green M.; Makowski M.; Osinusi A.; Nayak S.; Lane H. C. Remdesivir for the treatment of Covid-19 — final report. N. Engl. J. Med. 2020, 383, 1813–1826. 10.1056/NEJMoa2007764. PubMed DOI PMC
Wang Y.; Zhang D.; Du G.; Du R.; Zhao J.; Jin Y.; Fu S.; Gao L.; Cheng Z.; Lu Q.; Hu Y.; Luo G.; Wang K.; Lu Y.; Li H.; Wang S.; Ruan S.; Yang C.; Mei C.; Wang Y.; Ding D.; Wu F.; Tang X.; Ye X.; Ye Y.; Liu B.; Yang J.; Yin W.; Wang A.; Fan G.; Zhou F.; Liu Z.; Gu X.; Xu J.; Shang L.; Zhang Y.; Cao L.; Guo T.; Wan Y.; Qin H.; Jiang Y.; Jaki T.; Hayden F. G.; Horby P. W.; Cao B.; Wang C. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020, 395, 1569–1578. 10.1016/S0140-6736(20)31022-9. PubMed DOI PMC
Dyer O. Covid-19: Remdesivir has little or no impact on survival, WHO trial shows. BMJ. 2020, 371, m405. PubMed
Boulware D. R.; Pullen M. F.; Bangdiwala A. S.; Pastick K. A.; Lofgren S. M.; Okafor E. C.; Skipper C. P.; Nascene A. A.; Nicol M. R.; Abassi M.; Engen N. W.; Cheng M. P.; LaBar D.; Lother S. A.; MacKenzie L. J.; Drobot G.; Marten N.; Zarychanski R.; Kelly L. E.; Schwartz I. S.; McDonald E. G.; Rajasingham R.; Lee T. C.; Hullsiek K. H. A Randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N. Engl. J. Med. 2020, 383, 517–525. 10.1056/NEJMoa2016638. PubMed DOI PMC
Skipper C. P.; Pastick K. A.; Engen N. W.; Bangdiwala A. S.; Abassi M.; Lofgren S. M.; Williams D. A.; Okafor E. C.; Pullen M. F.; Nicol M. R.; Nascene A. A.; Hullsiek K. H.; Cheng M. P.; Luke D.; Lother S. A.; MacKenzie L. J.; Drobot G.; Kelly L. E.; Schwartz I. S.; Zarychanski R.; McDonald E. G.; Lee T. C.; Rajasingham R.; Boulware D. R. Hydroxychloroquine in nonhospitalized adults with early COVID-19: a randomized trial. Ann. Intern. Med. 2020, 173, 623–631. 10.7326/M20-4207. PubMed DOI PMC
Cavalcanti A. B.; Zampieri F. G.; Rosa R. G.; Azevedo L. C. P.; Veiga V. C.; Avezum A.; Damiani L. P.; Marcadenti A.; Kawano-Dourado L.; Lisboa T.; Junqueira D. L. M.; de Barros e Silva P. G. M.; Tramujas L.; Abreu-Silva E. O.; Laranjeira L. N.; Soares A. T.; Echenique L. S.; Pereira A. J.; Freitas F. G. R.; Gebara O. C. E.; Dantas V. C. S.; Furtado R. H. M.; Milan E. P.; Golin N. A.; Cardoso F. F.; Maia I. S.; Hoffmann Filho C. R.; Kormann A. P. M.; Amazonas R. B.; Bocchi de Oliveira M. F.; Serpa-Neto A.; Falavigna M.; Lopes R. D.; Machado F. R.; Berwanger O. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N. Engl. J. Med. 2020, 383, 2041–2052. 10.1056/NEJMoa2019014. PubMed DOI PMC
Horby P. W.; Mafham M.; Bell J. L.; Linsell L.; Staplin N.; Emberson J.; Palfreeman A.; Raw J.; Elmahi E.; Prudon B.; Green C.; Carley S.; Chadwick D.; Davies M.; Wise M. P.; Baillie J. K.; Chappell L. C.; Faust S. N.; Jaki T.; Jefferey K.; Lim W. S.; Montgomery A.; Rowan K.; Juszczak E.; Haynes R.; Landray M. J. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2020, 396, 1345–1352. 10.1016/S0140-6736(20)32013-4. PubMed DOI PMC
Cao B.; Wang Y.; Wen D.; Liu W.; Wang J.; Fan G.; Ruan L.; Song B.; Cai Y.; Wei M.; Li X.; Xia J.; Chen N.; Xiang J.; Yu T.; Bai T.; Xie X.; Zhang L.; Li C.; Yuan Y.; Chen H.; Li H.; Huang H.; Tu S.; Gong F.; Liu Y.; Wei Y.; Dong C.; Zhou F.; Gu X.; Xu J.; Liu Z.; Zhang Y.; Li H.; Shang L.; Wang K.; Li K.; Zhou X.; Dong X.; Qu Z.; Lu S.; Hu X.; Ruan S.; Luo S.; Wu J.; Peng L.; Cheng F.; Pan L.; Zou J.; Jia C.; Wang J.; Liu X.; Wang S.; Wu X.; Ge Q.; He J.; Zhan H.; Qiu F.; Guo L.; Huang C.; Jaki T.; Hayden F. G.; Horby P. W.; Zhang D.; Wang C. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 2020, 382, 1787–1799. 10.1056/NEJMoa2001282. PubMed DOI PMC
Peiffer-Smadja N.; Yazdanpanah Y. Nebulised interferon beta-1a for patients with COVID-19. Lancet Respir. Med. 2021, 9, 122–123. 10.1016/S2213-2600(20)30523-3. PubMed DOI PMC
Schreiber G.The role of type I interferons in the pathogenesis and treatment of COVID-19. Front. Immunol. 2020, 11, 595739. PubMed PMC
Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. 10.1056/NEJMoa2021436. PubMed DOI PMC
Molina J. M.; Capitant C.; Spire B.; Pialoux G.; Cotte L.; Charreau I.; Tremblay C.; Le Gall J. M.; Cua E.; Pasquet A.; Raffi F.; Pintado C.; Chidiac C.; Chas J.; Charbonneau P.; Delaugerre C.; Suzan-Monti M.; Loze B.; Fonsart J.; Peytavin G.; Cheret A.; Timsit J.; Girard G.; Lorente N.; Préau M.; Rooney J. F.; Wainberg M. A.; Thompson D.; Rozenbaum W.; Doré V.; Marchand L.; Simon M. C.; Etien N.; Aboulker J. P.; Meyer L.; Delfraissy J. F. On-demand preexposure prophylaxis in men at high risk for HIV-1 infection. N. Engl. J. Med. 2015, 373, 2237–2246. 10.1056/NEJMoa1506273. PubMed DOI
Shang J.; Wan Y.; Luo C.; Ye G.; Geng Q.; Auerbach A.; Li F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 11727–11734. 10.1073/pnas.2003138117. PubMed DOI PMC
Hoffmann M.; Kleine-Weber H.; Schroeder S.; Krüger N.; Herrler T.; Erichsen S.; Schiergens T. S.; Herrler G.; Wu N.-H.; Nitsche A.; Müller M. A.; Drosten C.; Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. 10.1016/j.cell.2020.02.052. PubMed DOI PMC
Letko M.; Marzi A.; Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 2020, 5, 562–569. 10.1038/s41564-020-0688-y. PubMed DOI PMC
Wang K.; Chen W.; Zhang Z.; Deng Y.; Lian J.-Q.; Du P.; Wei D.; Zhang Y.; Sun X.-X.; Gong L.; Yang X.; He L.; Zhang L.; Yang Z.; Geng J.-J.; Chen R.; Zhang H.; Wang B.; Zhu Y.-M.; Nan G.; Jiang J.-L.; Li L.; Wu J.; Lin P.; Huang W.; Xie L.; Zheng Z.-H.; Zhang K.; Miao J.-L.; Cui H.-Y.; Huang M.; Zhang J.; Fu L.; Yang X.-M.; Zhao Z.; Sun S.; Gu H.; Wang Z.; Wang C.-F.; Lu Y.; Liu Y.-Y.; Wang Q.-Y.; Bian H.; Zhu P.; Chen Z.-N. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 2020, 5, 283.10.1038/s41392-020-00426-x. PubMed DOI PMC
Pišlar A.; Mitrović A.; Sabotič J.; Pečar Fonović U.; Perišić Nanut M.; Jakoš T.; Senjor E.; Kos J. The role of cysteine peptidases in coronavirus cell entry and replication: the therapeutic potential of cathepsin inhibitors. PLoS Pathog. 2020, 16, e1009013.10.1371/journal.ppat.1009013. PubMed DOI PMC
Mellott D. M.; Tseng C.-T.; Drelich A.; Fajtová P.; Chenna B. C.; Kostomiris D. H.; Hsu J.; Zhu J.; Taylor Z. W.; Kocurek K. I.; Tat V.; Katzfuss A.; Li L.; Giardini M. A.; Skinner D.; Hirata K.; Yoon M. C.; Beck S.; Carlin A. F.; Clark A. E.; Beretta L.; Maneval D.; Hook V.; Frueh F.; Hurst B. L.; Wang H.; Raushel F. M.; O’Donoghue A. J.; de Siqueira-Neto J. L.; Meek T. D.; McKerrow J. H. A clinical-stage cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cells. ACS Chem. Biol. 2021, 16, 642–650. 10.1021/acschembio.0c00875. PubMed DOI PMC
Zhao M.-M.; Yang W.-L.; Yang F.-Y.; Zhang L.; Huang W.-J.; Hou W.; Fan C.-F.; Jin R.-H.; Feng Y.-M.; Wang Y.-C.; Yang J.-K. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Sig. Transduct. Target. Ther. 2021, 6, 134.10.1038/s41392-021-00558-8. PubMed DOI PMC
Gerber A.; Welte T.; Ansorge S.; Bühling F. In Cellular Peptidases in Immune Functions and Diseases 2, Langner J., Ansorge S., Eds.; Springer US: Boston, MA, 2002; pp 287–292.
Coomes E. A.; Haghbayan H. Interleukin-6 in Covid-19: a systematic review and meta-analysis. Rev. Med. Virol. 2020, 30, 1–9. 10.1002/rmv.2141. PubMed DOI PMC
Liu T.; Luo S.; Libby P.; Shi G.-P. Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients. Pharmacol. Ther. 2020, 213, 107587.10.1016/j.pharmthera.2020.107587. PubMed DOI PMC
Hoffmann M.; Schroeder S.; Kleine-Weber H.; Müller M. A.; Drosten C.; Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob. Agents Chemother. 2020, 64, e00754.10.1128/AAC.00754-20. PubMed DOI PMC
Shin D.; Mukherjee R.; Grewe D.; Bojkova D.; Baek K.; Bhattacharya A.; Schulz L.; Widera M.; Mehdipour A. R.; Tascher G.; Geurink P. P.; Wilhelm A.; van der Heden van Noort G. J.; Ovaa H.; Müller S.; Knobeloch K.-P.; Rajalingam K.; Schulman B. A.; Cinatl J.; Hummer G.; Ciesek S.; Dikic I. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020, 587, 657–662. 10.1038/s41586-020-2601-5. PubMed DOI PMC
Zhang L.; Lin D.; Sun X.; Curth U.; Drosten C.; Sauerhering L.; Becker S.; Rox K.; Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020, 368, 409–412. 10.1126/science.abb3405. PubMed DOI PMC
Jin Z.; Du X.; Xu Y.; Deng Y.; Liu M.; Zhao Y.; Zhang B.; Li X.; Zhang L.; Peng C.; Duan Y.; Yu J.; Wang L.; Yang K.; Liu F.; Jiang R.; Yang X.; You T.; Liu X.; Yang X.; Bai F.; Liu H.; Liu X.; Guddat L. W.; Xu W.; Xiao G.; Qin C.; Shi Z.; Jiang H.; Rao Z.; Yang H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293. 10.1038/s41586-020-2223-y. PubMed DOI
Dai W.; Zhang B.; Jiang X.-M.; Su H.; Li J.; Zhao Y.; Xie X.; Jin Z.; Peng J.; Liu F.; Li C.; Li Y.; Bai F.; Wang H.; Cheng X.; Cen X.; Hu S.; Yang X.; Wang J.; Liu X.; Xiao G.; Jiang H.; Rao Z.; Zhang L.-K.; Xu Y.; Yang H.; Liu H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 2020, 368, 1331–1335. 10.1126/science.abb4489. PubMed DOI PMC
Linington R. G.; Clark B. R.; Trimble E. E.; Almanza A.; Urena L.-D.; Kyle D. E.; Gerwick W. H. Antimalarial peptides from marine cyanobacteria: isolation and structural elucidation of gallinamide A. J. Nat. Prod. 2009, 72, 14–17. 10.1021/np8003529. PubMed DOI PMC
Taori K.; Liu Y.; Paul V. J.; Luesch H. Combinatorial strategies by marine cyanobacteria: symplostatin 4, an antimitotic natural dolastatin 10/15 hybrid that synergizes with the coproduced HDAC inhibitor largazole. ChemBioChem 2009, 10, 1634–1639. 10.1002/cbic.200900192. PubMed DOI
Stolze S. C.; Deu E.; Kaschani F.; Li N.; Florea B. I.; Richau K. H.; Colby T.; van der Hoorn R. A. L.; Overkleeft H. S.; Bogyo M.; Kaiser M. The antimalarial natural product symplostatin 4 is a nanomolar inhibitor of the food vacuole falcipains. Chem. Biol. 2012, 19, 1546–1555. 10.1016/j.chembiol.2012.09.020. PubMed DOI PMC
Conroy T.; Guo J. T.; Elias N.; Cergol K. M.; Gut J.; Legac J.; Khatoon L.; Liu Y.; McGowan S.; Rosenthal P. J.; Hunt N. H.; Payne R. J. Synthesis of gallinamide A analogues as potent falcipain inhibitors and antimalarials. J. Med. Chem. 2014, 57, 10557–10563. 10.1021/jm501439w. PubMed DOI
Boudreau P. D.; Miller B. W.; McCall L.-I.; Almaliti J.; Reher R.; Hirata K.; Le T.; Siqueira-Neto J. L.; Hook V.; Gerwick W. H. Design of gallinamide A analogs as potent inhibitors of the cysteine proteases human cathepsin L and Trypanosoma cruzi cruzain. J. Med. Chem. 2019, 62, 9026–9044. 10.1021/acs.jmedchem.9b00294. PubMed DOI PMC
Miller B.; Friedman A. J.; Choi H.; Hogan J.; McCammon J. A.; Hook V.; Gerwick W. H. The marine cyanobacterial metabolite gallinamide A is a potent and selective inhibitor of human cathepsin L. J. Nat. Prod. 2014, 77, 92–99. 10.1021/np400727r. PubMed DOI PMC
Stoye A.; Juillard A.; Tang A. H.; Legac J.; Gut J.; White K. L.; Charman S. A.; Rosenthal P. J.; Grau G. E. R.; Hunt N. H.; Payne R. J. Falcipain inhibitors based on the natural product gallinamide A are potent in vitro and in vivo antimalarials. J. Med. Chem. 2019, 62, 5562–5578. 10.1021/acs.jmedchem.9b00504. PubMed DOI
Sacco M. D.; Ma C.; Lagarias P.; Gao A.; Townsend J. A.; Meng X.; Dube P.; Zhang X.; Hu Y.; Kitamura N.; Hurst B.; Tarbet B.; Marty M. T.; Kolocouris A.; Xiang Y.; Chen Y.; Wang J. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and cathepsin L. Sci. Adv. 2020, 6, eabe0751.10.1126/sciadv.abe0751. PubMed DOI PMC
Steuten K.; Kim H.; Widen J. C.; Babin B. M.; Onguka O.; Lovell S.; Bolgi O.; Cerikan B.; Neufeldt C. J.; Cortese M.; Muir R. K.; Bennett J. M.; Geiss-Friedlander R.; Peters C.; Bartenschlager R.; Bogyo M. Challenges for targeting SARS-CoV-2 proteases as a therapeutic strategy for COVID-19. ACS Infect. Dis. 2021, 7, 1457–1468. 10.1021/acsinfecdis.0c00815. PubMed DOI PMC
Montaser M.; Lalmanach G.; Mach L. CA-074, but not its methyl ester CA-074Me, is a selective inhibitor of cathepsin B within living cells. Biol. Chem. 2002, 383, 1305–1308. 10.1515/BC.2002.147. PubMed DOI
Zhang L.; Jackson C. B.; Mou H.; Ojha A.; Peng H.; Quinlan B. D.; Rangarajan E. S.; Pan A.; Vanderheiden A.; Suthar M. S.; Li W.; Izard T.; Rader C.; Farzan M.; Choe H. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat. Commun. 2020, 11, 6013.10.1038/s41467-020-19808-4. PubMed DOI PMC
Bertram S.; Dijkman R.; Habjan M.; Heurich A.; Gierer S.; Glowacka I.; Welsch K.; Winkler M.; Schneider H.; Hofmann-Winkler H.; Thiel V.; Pohlmann S. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J. Virol. 2013, 87, 6150–6160. 10.1128/JVI.03372-12. PubMed DOI PMC
Zhou N.; Pan T.; Zhang J.; Li Q.; Zhang X.; Bai C.; Huang F.; Peng T.; Zhang J.; Liu C.; Tao L.; Zhang H. Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of Ebola virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). J. Biol. Chem. 2016, 291, 9218–9232. 10.1074/jbc.M116.716100. PubMed DOI PMC
Shah P. P.; Wang T.; Kaletsky R. L.; Myers M. C.; Purvis J. E.; Jing H.; Huryn D. M.; Greenbaum D. C.; Smith A. B. 3rd; Bates P.; Diamond S. L. A small-molecule oxocarbazate inhibitor of human cathepsin L blocks severe acute respiratory syndrome and Ebola pseudotype virus infection into human embryonic kidney 293T cells. Mol. Pharmacol. 2010, 78, 319–324. 10.1124/mol.110.064261. PubMed DOI PMC
Nie X.; Qian L.; Sun R.; Huang B.; Dong X.; Xiao Q.; Zhang Q.; Lu T.; Yue L.; Chen S.; Li X.; Sun Y.; Li L.; Xu L.; Li Y.; Yang M.; Xue Z.; Liang S.; Ding X.; Yuan C.; Peng L.; Liu W.; Yi X.; Lyu M.; Xiao G.; Xu X.; Ge W.; He J.; Fan J.; Wu J.; Luo M.; Chang X.; Pan H.; Cai X.; Zhou J.; Yu J.; Gao H.; Xie M.; Wang S.; Ruan G.; Chen H.; Su H.; Mei H.; Luo D.; Zhao D.; Xu F.; Li Y.; Zhu Y.; Xia J.; Hu Y.; Guo T. Multi-organ proteomic landscape of COVID-19 autopsies. Cell 2021, 184, 775–791. 10.1016/j.cell.2021.01.004. PubMed DOI PMC
Newman D. J.; Cragg G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. 10.1021/acs.jnatprod.9b01285. PubMed DOI
Christy M. P.; Uekusa Y.; Gerwick L.; Gerwick W. H. Natural products with potential to treat RNA virus pathogens including SARS-CoV-2. J. Nat. Prod. 2021, 84, 161–182. 10.1021/acs.jnatprod.0c00968. PubMed DOI PMC
Sudhan D. R.; Siemann D. W. Cathepsin L targeting in cancer treatment. Pharmacol. Ther. 2015, 155, 105–116. 10.1016/j.pharmthera.2015.08.007. PubMed DOI PMC
Schedel J.; Seemayer C. A.; Pap T.; Neidhart M.; Kuchen S.; Michel B. A.; Gay R. E.; Müller-Ladner U.; Gay S.; Zacharias W. Targeting cathepsin L (CL) by specific ribozymes decreases CL protein synthesis and cartilage destruction in rheumatoid arthritis. Gene Ther. 2004, 11, 1040–1047. 10.1038/sj.gt.3302265. PubMed DOI
Garsen M.; Rops A. L.; Dijkman H.; Willemsen B.; van Kuppevelt T. H.; Russel F. G.; Rabelink T. J.; Berden J. H.; Reinheckel T.; van der Vlag J. Cathepsin L is crucial for the development of early experimental diabetic nephropathy. Kidney Int. 2016, 90, 1012–1022. 10.1016/j.kint.2016.06.035. PubMed DOI
Li Y. Y.; Fang J.; Ao G. Z. Cathepsin B and L inhibitors: a patent review (2010 - present). Expert Opin. Ther. Pat. 2017, 27, 643–656. 10.1080/13543776.2017.1272572. PubMed DOI
Roth W.; Deussing J.; Botchkarev V. A.; Pauly-Evers M.; Saftig P.; Hafner A.; Schmidt P.; Schmahl W.; Scherer J.; Anton-Lamprecht I.; Von Figura K.; Paus R.; Peters C. Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and pertubation of hair follicle cycling. FASEB J. 2000, 14, 2075–2086. 10.1096/fj.99-0970com. PubMed DOI
Potts W.; Bowyer J.; Jones H.; Tucker D.; Freemont A. J.; Millest A.; Martin C.; Vernon W.; Neerunjun D.; Slynn G.; Harper F.; Maciewicz R. Cathepsin L-deficient mice exhibit abnormal skin and bone development and show increased resistance to osteoporosis following ovariectomy. Int. J. Exp. Pathol. 2004, 85, 85–96. 10.1111/j.0959-9673.2004.00373.x. PubMed DOI PMC
Petermann I.; Mayer C.; Stypmann J.; Biniossek M. L.; Tobin D. J.; Engelen M. A.; Dandekar T.; Grune T.; Schild L.; Peters C.; Reinheckel T. Lysosomal, cytoskeletal, and metabolic alterations in cardiomyopathy of cathepsin L knockout mice. FASEB J. 2006, 20, 1266–1268. 10.1096/fj.05-5517fje. PubMed DOI
Xu X.; Greenland J.; Baluk P.; Adams A.; Bose O.; McDonald D. M.; Caughey G. H. Cathepsin L protects mice from mycoplasmal infection and is essential for airway lymphangiogenesis. Am. J. Respir. Cell Mol. Biol. 2013, 49, 437–444. 10.1165/rcmb.2013-0016OC. PubMed DOI PMC
McKerrow J. H. Update on drug development targeting parasite cysteine proteases. PLoS Neglected Trop. Dis. 2018, 12, e0005850.10.1371/journal.pntd.0005850. PubMed DOI PMC
Koch J.; Uckeley Z. M.; Doldan P.; Stanifer M.; Boulant S.; Lozach P.-Y. TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. EMBO J. 2021, 40, e107821.10.15252/embj.2021107821. PubMed DOI PMC
Ou T.; Mou H.; Zhang L.; Ojha A.; Choe H.; Farzan M. Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathog. 2021, 17, e1009212.10.1371/journal.ppat.1009212. PubMed DOI PMC
Puelles V. G.; Lütgehetmann M.; Lindenmeyer M. T.; Sperhake J. P.; Wong M. N.; Allweiss L.; Chilla S.; Heinemann A.; Wanner N.; Liu S.; Braun F.; Lu S.; Pfefferle S.; Schröder A. S.; Edler C.; Gross O.; Glatzel M.; Wichmann D.; Wiech T.; Kluge S.; Pueschel K.; Aepfelbacher M.; Huber T. B. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 2020, 383, 590–592. 10.1056/NEJMc2011400. PubMed DOI PMC
Lukassen S.; Chua R. L.; Trefzer T.; Kahn N. C.; Schneider M. A.; Muley T.; Winter H.; Meister M.; Veith C.; Boots A. W.; Hennig B. P.; Kreuter M.; Conrad C.; Eils R. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020, 39, e105114.10.15252/embj.2020105114. PubMed DOI PMC
Tonge P. J. Quantifying the interactions between biomolecules: guidelines for assay design and data analysis. ACS Infect. Dis. 2019, 5, 796–808. 10.1021/acsinfecdis.9b00012. PubMed DOI PMC
Follenzi A.; Battaglia M.; Lombardo A.; Annoni A.; Roncarolo M. G.; Naldini L. Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 2004, 103, 3700–3709. 10.1182/blood-2003-09-3217. PubMed DOI
Aggarwal A.; Iemma T. L.; Shih I.; Newsome T. P.; McAllery S.; Cunningham A. L.; Turville S. G. Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog. 2012, 8, e1002762.10.1371/journal.ppat.1002762. PubMed DOI PMC
Tea F.; Ospina Stella A.; Aggarwal A.; Ross Darley D.; Pilli D.; Vitale D.; Merheb V.; Lee F. X. Z.; Cunningham P.; Walker G. J.; Fichter C.; Brown D. A.; Rawlinson W. D.; Isaacs S. R.; Mathivanan V.; Hoffmann M.; Pöhlman S.; Mazigi O.; Christ D.; Rockett R. J.; Sintchenko V.; Hoad V. C.; Irving D. O.; Dore G. J.; Gosbell I. B.; Kelleher A. D.; Matthews G. V.; Brilot F.; Turville S. G. SARS-CoV-2 neutralizing antibodies: Longevity, breadth, and evasion by emerging viral variants. PLoS Med. 2021, 18, e1003656.10.1371/journal.pmed.1003656. PubMed DOI PMC
Darabedian N.; Pratt M. R. Identifying potentially O-GlcNAcylated proteins using metabolic labeling, bioorthogonal enrichment, and Western blotting. Methods Enzymol. 2019, 622, 293–307. 10.1016/bs.mie.2019.02.017. PubMed DOI PMC
Harney D. J.; Cielesh M.; Chu R.; Cooke K. C.; James D. E.; Stöckli J.; Larance M. Proteomics analysis of adipose depots after intermittent fasting reveals visceral fat preservation mechanisms. Cell Rep. 2021, 34, 108804.10.1016/j.celrep.2021.108804. PubMed DOI
Walker G. J.; Clifford V.; Bansal N.; Stella A. O.; Turville S.; Stelzer-Braid S.; Klein L. D.; Rawlinson W. SARS-CoV-2 in human milk is inactivated by Holder pasteurisation but not cold storage. J. Paediatr. Child Health 2020, 56, 1872–1874. 10.1111/jpc.15065. PubMed DOI PMC
Aggarwal A.; Hitchen T. L.; Ootes L.; McAllery S.; Wong A.; Nguyen K.; McCluskey A.; Robinson P. J.; Turville S. G. HIV infection is influenced by dynamin at 3 independent points in the viral life cycle. Traffic 2017, 18, 392–410. 10.1111/tra.12481. PubMed DOI
Chou T. C. Preclinical versus clinical drug combination studies. Leuk. Lymphoma 2008, 49, 2059–2080. 10.1080/10428190802353591. PubMed DOI
Chou T. C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. 10.1158/0008-5472.CAN-09-1947. PubMed DOI
Chou T. C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681. 10.1124/pr.58.3.10. PubMed DOI
Chou T. C.; Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 1984, 22, 27–55. 10.1016/0065-2571(84)90007-4. PubMed DOI