Potent Anti-SARS-CoV-2 Activity by the Natural Product Gallinamide A and Analogues via Inhibition of Cathepsin L

. 2022 Feb 24 ; 65 (4) : 2956-2970. [epub] 20211103

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34730959

Grantová podpora
U01 TW006634 FIC NIH HHS - United States

Cathepsin L is a key host cysteine protease utilized by coronaviruses for cell entry and is a promising drug target for novel antivirals against SARS-CoV-2. The marine natural product gallinamide A and several synthetic analogues were identified as potent inhibitors of cathepsin L with IC50 values in the picomolar range. Lead molecules possessed selectivity over other cathepsins and alternative host proteases involved in viral entry. Gallinamide A directly interacted with cathepsin L in cells and, together with two lead analogues, potently inhibited SARS-CoV-2 infection in vitro, with EC50 values in the nanomolar range. Reduced antiviral activity was observed in cells overexpressing transmembrane protease, serine 2 (TMPRSS2); however, a synergistic improvement in antiviral activity was achieved when combined with a TMPRSS2 inhibitor. These data highlight the potential of cathepsin L as a COVID-19 drug target as well as the likely need to inhibit multiple routes of viral entry to achieve efficacy.

Před aktualizací

PubMed

Zobrazit více v PubMed

World Health Organization . WHO Director-General’s opening remarks at the media briefing on COVID-19. 2020.

Krammer F. SARS-CoV-2 vaccines in development. Nature 2020, 586, 516–527. 10.1038/s41586-020-2798-3. PubMed DOI

Polack F. P.; Thomas S. J.; Kitchin N.; Absalon J.; Gurtman A.; Lockhart S.; Perez J. L.; Pérez Marc G.; Moreira E. D.; Zerbini C.; Bailey R.; Swanson K. A.; Roychoudhury S.; Koury K.; Li P.; Kalina W. V.; Cooper D.; Frenck R. W.; Hammitt L. L.; Türeci Ö.; Nell H.; Schaefer A.; Ünal S.; Tresnan D. B.; Mather S.; Dormitzer P. R.; Şahin U.; Jansen K. U.; Gruber W. C. Safety and efficacy of the BNT162b2 mRNA Covid-19. N. Engl. J. Med. 2020, 383, 2603–2615. 10.1056/NEJMoa2034577. PubMed DOI PMC

Voysey M.; Clemens S. A. C.; Madhi S. A.; Weckx L. Y.; Folegatti P. M.; Aley P. K.; Angus B.; Baillie V. L.; Barnabas S. L.; Bhorat Q. E.; Bibi S.; Briner C.; Cicconi P.; Collins A. M.; Colin-Jones R.; Cutland C. L.; Darton T. C.; Dheda K.; Duncan C. J. A.; Emary K. R. W.; Ewer K. J.; Fairlie L.; Faust S. N.; Feng S.; Ferreira D. M.; Finn A.; Goodman A. L.; Green C. M.; Green C. A.; Heath P. T.; Hill C.; Hill H.; Hirsch I.; Hodgson S. H. C.; Izu A.; Jackson S.; Jenkin D.; Joe C. C. D.; Kerridge S.; Koen A.; Kwatra G.; Lazarus R.; Lawrie A. M.; Lelliott A.; Libri V.; Lillie P. J.; Mallory R.; Mendes A. V. A.; Milan E. P.; Minassian A. M.; McGregor A.; Morrison H.; Mujadidi Y. F.; Nana A.; O’Reilly P. J.; Padayachee S. D.; Pittella A.; Plested E.; Pollock K. M.; Ramasamy M. N.; Rhead S.; Schwarzbold A. V.; Singh N.; Smith A.; Song R.; Snape M. D.; Sprinz E.; Sutherland R. K.; Tarrant R.; Thomson E. C.; Török M. E.; Toshner M.; Turner D. P. J.; Vekemans J.; Villafana T. L.; Watson M. E. E.; Williams C. J.; Douglas A. D.; Hill A. V. S.; Lambe T.; Gilbert S. C.; Pollard A. J. on behalf of the Oxford COVID Vaccine Trial Group. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. PubMed PMC

Poland G. A.; Ovsyannikova I. G.; Kennedy R. B. SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates. Lancet 2020, 396, 1595–1606. 10.1016/S0140-6736(20)32137-1. PubMed DOI PMC

Beigel J. H.; Tomashek K. M.; Dodd L. E.; Mehta A. K.; Zingman B. S.; Kalil A. C.; Hohmann E.; Chu H. Y.; Luetkemeyer A.; Kline S.; Lopez de Castilla D.; Finberg R. W.; Dierberg K.; Tapson V.; Hsieh L.; Patterson T. F.; Paredes R.; Sweeney D. A.; Short W. R.; Touloumi G.; Lye D. C.; Ohmagari N.; Oh M.-d.; Ruiz-Palacios G. M.; Benfield T.; Fätkenheuer G.; Kortepeter M. G.; Atmar R. L.; Creech C. B.; Lundgren J.; Babiker A. G.; Pett S.; Neaton J. D.; Burgess T. H.; Bonnett T.; Green M.; Makowski M.; Osinusi A.; Nayak S.; Lane H. C. Remdesivir for the treatment of Covid-19 — final report. N. Engl. J. Med. 2020, 383, 1813–1826. 10.1056/NEJMoa2007764. PubMed DOI PMC

Wang Y.; Zhang D.; Du G.; Du R.; Zhao J.; Jin Y.; Fu S.; Gao L.; Cheng Z.; Lu Q.; Hu Y.; Luo G.; Wang K.; Lu Y.; Li H.; Wang S.; Ruan S.; Yang C.; Mei C.; Wang Y.; Ding D.; Wu F.; Tang X.; Ye X.; Ye Y.; Liu B.; Yang J.; Yin W.; Wang A.; Fan G.; Zhou F.; Liu Z.; Gu X.; Xu J.; Shang L.; Zhang Y.; Cao L.; Guo T.; Wan Y.; Qin H.; Jiang Y.; Jaki T.; Hayden F. G.; Horby P. W.; Cao B.; Wang C. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020, 395, 1569–1578. 10.1016/S0140-6736(20)31022-9. PubMed DOI PMC

Dyer O. Covid-19: Remdesivir has little or no impact on survival, WHO trial shows. BMJ. 2020, 371, m405. PubMed

Boulware D. R.; Pullen M. F.; Bangdiwala A. S.; Pastick K. A.; Lofgren S. M.; Okafor E. C.; Skipper C. P.; Nascene A. A.; Nicol M. R.; Abassi M.; Engen N. W.; Cheng M. P.; LaBar D.; Lother S. A.; MacKenzie L. J.; Drobot G.; Marten N.; Zarychanski R.; Kelly L. E.; Schwartz I. S.; McDonald E. G.; Rajasingham R.; Lee T. C.; Hullsiek K. H. A Randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N. Engl. J. Med. 2020, 383, 517–525. 10.1056/NEJMoa2016638. PubMed DOI PMC

Skipper C. P.; Pastick K. A.; Engen N. W.; Bangdiwala A. S.; Abassi M.; Lofgren S. M.; Williams D. A.; Okafor E. C.; Pullen M. F.; Nicol M. R.; Nascene A. A.; Hullsiek K. H.; Cheng M. P.; Luke D.; Lother S. A.; MacKenzie L. J.; Drobot G.; Kelly L. E.; Schwartz I. S.; Zarychanski R.; McDonald E. G.; Lee T. C.; Rajasingham R.; Boulware D. R. Hydroxychloroquine in nonhospitalized adults with early COVID-19: a randomized trial. Ann. Intern. Med. 2020, 173, 623–631. 10.7326/M20-4207. PubMed DOI PMC

Cavalcanti A. B.; Zampieri F. G.; Rosa R. G.; Azevedo L. C. P.; Veiga V. C.; Avezum A.; Damiani L. P.; Marcadenti A.; Kawano-Dourado L.; Lisboa T.; Junqueira D. L. M.; de Barros e Silva P. G. M.; Tramujas L.; Abreu-Silva E. O.; Laranjeira L. N.; Soares A. T.; Echenique L. S.; Pereira A. J.; Freitas F. G. R.; Gebara O. C. E.; Dantas V. C. S.; Furtado R. H. M.; Milan E. P.; Golin N. A.; Cardoso F. F.; Maia I. S.; Hoffmann Filho C. R.; Kormann A. P. M.; Amazonas R. B.; Bocchi de Oliveira M. F.; Serpa-Neto A.; Falavigna M.; Lopes R. D.; Machado F. R.; Berwanger O. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N. Engl. J. Med. 2020, 383, 2041–2052. 10.1056/NEJMoa2019014. PubMed DOI PMC

Horby P. W.; Mafham M.; Bell J. L.; Linsell L.; Staplin N.; Emberson J.; Palfreeman A.; Raw J.; Elmahi E.; Prudon B.; Green C.; Carley S.; Chadwick D.; Davies M.; Wise M. P.; Baillie J. K.; Chappell L. C.; Faust S. N.; Jaki T.; Jefferey K.; Lim W. S.; Montgomery A.; Rowan K.; Juszczak E.; Haynes R.; Landray M. J. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2020, 396, 1345–1352. 10.1016/S0140-6736(20)32013-4. PubMed DOI PMC

Cao B.; Wang Y.; Wen D.; Liu W.; Wang J.; Fan G.; Ruan L.; Song B.; Cai Y.; Wei M.; Li X.; Xia J.; Chen N.; Xiang J.; Yu T.; Bai T.; Xie X.; Zhang L.; Li C.; Yuan Y.; Chen H.; Li H.; Huang H.; Tu S.; Gong F.; Liu Y.; Wei Y.; Dong C.; Zhou F.; Gu X.; Xu J.; Liu Z.; Zhang Y.; Li H.; Shang L.; Wang K.; Li K.; Zhou X.; Dong X.; Qu Z.; Lu S.; Hu X.; Ruan S.; Luo S.; Wu J.; Peng L.; Cheng F.; Pan L.; Zou J.; Jia C.; Wang J.; Liu X.; Wang S.; Wu X.; Ge Q.; He J.; Zhan H.; Qiu F.; Guo L.; Huang C.; Jaki T.; Hayden F. G.; Horby P. W.; Zhang D.; Wang C. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 2020, 382, 1787–1799. 10.1056/NEJMoa2001282. PubMed DOI PMC

Peiffer-Smadja N.; Yazdanpanah Y. Nebulised interferon beta-1a for patients with COVID-19. Lancet Respir. Med. 2021, 9, 122–123. 10.1016/S2213-2600(20)30523-3. PubMed DOI PMC

Schreiber G.The role of type I interferons in the pathogenesis and treatment of COVID-19. Front. Immunol. 2020, 11, 595739. PubMed PMC

Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. 10.1056/NEJMoa2021436. PubMed DOI PMC

Molina J. M.; Capitant C.; Spire B.; Pialoux G.; Cotte L.; Charreau I.; Tremblay C.; Le Gall J. M.; Cua E.; Pasquet A.; Raffi F.; Pintado C.; Chidiac C.; Chas J.; Charbonneau P.; Delaugerre C.; Suzan-Monti M.; Loze B.; Fonsart J.; Peytavin G.; Cheret A.; Timsit J.; Girard G.; Lorente N.; Préau M.; Rooney J. F.; Wainberg M. A.; Thompson D.; Rozenbaum W.; Doré V.; Marchand L.; Simon M. C.; Etien N.; Aboulker J. P.; Meyer L.; Delfraissy J. F. On-demand preexposure prophylaxis in men at high risk for HIV-1 infection. N. Engl. J. Med. 2015, 373, 2237–2246. 10.1056/NEJMoa1506273. PubMed DOI

Shang J.; Wan Y.; Luo C.; Ye G.; Geng Q.; Auerbach A.; Li F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 11727–11734. 10.1073/pnas.2003138117. PubMed DOI PMC

Hoffmann M.; Kleine-Weber H.; Schroeder S.; Krüger N.; Herrler T.; Erichsen S.; Schiergens T. S.; Herrler G.; Wu N.-H.; Nitsche A.; Müller M. A.; Drosten C.; Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. 10.1016/j.cell.2020.02.052. PubMed DOI PMC

Letko M.; Marzi A.; Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 2020, 5, 562–569. 10.1038/s41564-020-0688-y. PubMed DOI PMC

Wang K.; Chen W.; Zhang Z.; Deng Y.; Lian J.-Q.; Du P.; Wei D.; Zhang Y.; Sun X.-X.; Gong L.; Yang X.; He L.; Zhang L.; Yang Z.; Geng J.-J.; Chen R.; Zhang H.; Wang B.; Zhu Y.-M.; Nan G.; Jiang J.-L.; Li L.; Wu J.; Lin P.; Huang W.; Xie L.; Zheng Z.-H.; Zhang K.; Miao J.-L.; Cui H.-Y.; Huang M.; Zhang J.; Fu L.; Yang X.-M.; Zhao Z.; Sun S.; Gu H.; Wang Z.; Wang C.-F.; Lu Y.; Liu Y.-Y.; Wang Q.-Y.; Bian H.; Zhu P.; Chen Z.-N. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 2020, 5, 283.10.1038/s41392-020-00426-x. PubMed DOI PMC

Pišlar A.; Mitrović A.; Sabotič J.; Pečar Fonović U.; Perišić Nanut M.; Jakoš T.; Senjor E.; Kos J. The role of cysteine peptidases in coronavirus cell entry and replication: the therapeutic potential of cathepsin inhibitors. PLoS Pathog. 2020, 16, e1009013.10.1371/journal.ppat.1009013. PubMed DOI PMC

Mellott D. M.; Tseng C.-T.; Drelich A.; Fajtová P.; Chenna B. C.; Kostomiris D. H.; Hsu J.; Zhu J.; Taylor Z. W.; Kocurek K. I.; Tat V.; Katzfuss A.; Li L.; Giardini M. A.; Skinner D.; Hirata K.; Yoon M. C.; Beck S.; Carlin A. F.; Clark A. E.; Beretta L.; Maneval D.; Hook V.; Frueh F.; Hurst B. L.; Wang H.; Raushel F. M.; O’Donoghue A. J.; de Siqueira-Neto J. L.; Meek T. D.; McKerrow J. H. A clinical-stage cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cells. ACS Chem. Biol. 2021, 16, 642–650. 10.1021/acschembio.0c00875. PubMed DOI PMC

Zhao M.-M.; Yang W.-L.; Yang F.-Y.; Zhang L.; Huang W.-J.; Hou W.; Fan C.-F.; Jin R.-H.; Feng Y.-M.; Wang Y.-C.; Yang J.-K. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Sig. Transduct. Target. Ther. 2021, 6, 134.10.1038/s41392-021-00558-8. PubMed DOI PMC

Gerber A.; Welte T.; Ansorge S.; Bühling F. In Cellular Peptidases in Immune Functions and Diseases 2, Langner J., Ansorge S., Eds.; Springer US: Boston, MA, 2002; pp 287–292.

Coomes E. A.; Haghbayan H. Interleukin-6 in Covid-19: a systematic review and meta-analysis. Rev. Med. Virol. 2020, 30, 1–9. 10.1002/rmv.2141. PubMed DOI PMC

Liu T.; Luo S.; Libby P.; Shi G.-P. Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients. Pharmacol. Ther. 2020, 213, 107587.10.1016/j.pharmthera.2020.107587. PubMed DOI PMC

Hoffmann M.; Schroeder S.; Kleine-Weber H.; Müller M. A.; Drosten C.; Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob. Agents Chemother. 2020, 64, e00754.10.1128/AAC.00754-20. PubMed DOI PMC

Shin D.; Mukherjee R.; Grewe D.; Bojkova D.; Baek K.; Bhattacharya A.; Schulz L.; Widera M.; Mehdipour A. R.; Tascher G.; Geurink P. P.; Wilhelm A.; van der Heden van Noort G. J.; Ovaa H.; Müller S.; Knobeloch K.-P.; Rajalingam K.; Schulman B. A.; Cinatl J.; Hummer G.; Ciesek S.; Dikic I. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020, 587, 657–662. 10.1038/s41586-020-2601-5. PubMed DOI PMC

Zhang L.; Lin D.; Sun X.; Curth U.; Drosten C.; Sauerhering L.; Becker S.; Rox K.; Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020, 368, 409–412. 10.1126/science.abb3405. PubMed DOI PMC

Jin Z.; Du X.; Xu Y.; Deng Y.; Liu M.; Zhao Y.; Zhang B.; Li X.; Zhang L.; Peng C.; Duan Y.; Yu J.; Wang L.; Yang K.; Liu F.; Jiang R.; Yang X.; You T.; Liu X.; Yang X.; Bai F.; Liu H.; Liu X.; Guddat L. W.; Xu W.; Xiao G.; Qin C.; Shi Z.; Jiang H.; Rao Z.; Yang H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293. 10.1038/s41586-020-2223-y. PubMed DOI

Dai W.; Zhang B.; Jiang X.-M.; Su H.; Li J.; Zhao Y.; Xie X.; Jin Z.; Peng J.; Liu F.; Li C.; Li Y.; Bai F.; Wang H.; Cheng X.; Cen X.; Hu S.; Yang X.; Wang J.; Liu X.; Xiao G.; Jiang H.; Rao Z.; Zhang L.-K.; Xu Y.; Yang H.; Liu H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 2020, 368, 1331–1335. 10.1126/science.abb4489. PubMed DOI PMC

Linington R. G.; Clark B. R.; Trimble E. E.; Almanza A.; Urena L.-D.; Kyle D. E.; Gerwick W. H. Antimalarial peptides from marine cyanobacteria: isolation and structural elucidation of gallinamide A. J. Nat. Prod. 2009, 72, 14–17. 10.1021/np8003529. PubMed DOI PMC

Taori K.; Liu Y.; Paul V. J.; Luesch H. Combinatorial strategies by marine cyanobacteria: symplostatin 4, an antimitotic natural dolastatin 10/15 hybrid that synergizes with the coproduced HDAC inhibitor largazole. ChemBioChem 2009, 10, 1634–1639. 10.1002/cbic.200900192. PubMed DOI

Stolze S. C.; Deu E.; Kaschani F.; Li N.; Florea B. I.; Richau K. H.; Colby T.; van der Hoorn R. A. L.; Overkleeft H. S.; Bogyo M.; Kaiser M. The antimalarial natural product symplostatin 4 is a nanomolar inhibitor of the food vacuole falcipains. Chem. Biol. 2012, 19, 1546–1555. 10.1016/j.chembiol.2012.09.020. PubMed DOI PMC

Conroy T.; Guo J. T.; Elias N.; Cergol K. M.; Gut J.; Legac J.; Khatoon L.; Liu Y.; McGowan S.; Rosenthal P. J.; Hunt N. H.; Payne R. J. Synthesis of gallinamide A analogues as potent falcipain inhibitors and antimalarials. J. Med. Chem. 2014, 57, 10557–10563. 10.1021/jm501439w. PubMed DOI

Boudreau P. D.; Miller B. W.; McCall L.-I.; Almaliti J.; Reher R.; Hirata K.; Le T.; Siqueira-Neto J. L.; Hook V.; Gerwick W. H. Design of gallinamide A analogs as potent inhibitors of the cysteine proteases human cathepsin L and Trypanosoma cruzi cruzain. J. Med. Chem. 2019, 62, 9026–9044. 10.1021/acs.jmedchem.9b00294. PubMed DOI PMC

Miller B.; Friedman A. J.; Choi H.; Hogan J.; McCammon J. A.; Hook V.; Gerwick W. H. The marine cyanobacterial metabolite gallinamide A is a potent and selective inhibitor of human cathepsin L. J. Nat. Prod. 2014, 77, 92–99. 10.1021/np400727r. PubMed DOI PMC

Stoye A.; Juillard A.; Tang A. H.; Legac J.; Gut J.; White K. L.; Charman S. A.; Rosenthal P. J.; Grau G. E. R.; Hunt N. H.; Payne R. J. Falcipain inhibitors based on the natural product gallinamide A are potent in vitro and in vivo antimalarials. J. Med. Chem. 2019, 62, 5562–5578. 10.1021/acs.jmedchem.9b00504. PubMed DOI

Sacco M. D.; Ma C.; Lagarias P.; Gao A.; Townsend J. A.; Meng X.; Dube P.; Zhang X.; Hu Y.; Kitamura N.; Hurst B.; Tarbet B.; Marty M. T.; Kolocouris A.; Xiang Y.; Chen Y.; Wang J. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and cathepsin L. Sci. Adv. 2020, 6, eabe0751.10.1126/sciadv.abe0751. PubMed DOI PMC

Steuten K.; Kim H.; Widen J. C.; Babin B. M.; Onguka O.; Lovell S.; Bolgi O.; Cerikan B.; Neufeldt C. J.; Cortese M.; Muir R. K.; Bennett J. M.; Geiss-Friedlander R.; Peters C.; Bartenschlager R.; Bogyo M. Challenges for targeting SARS-CoV-2 proteases as a therapeutic strategy for COVID-19. ACS Infect. Dis. 2021, 7, 1457–1468. 10.1021/acsinfecdis.0c00815. PubMed DOI PMC

Montaser M.; Lalmanach G.; Mach L. CA-074, but not its methyl ester CA-074Me, is a selective inhibitor of cathepsin B within living cells. Biol. Chem. 2002, 383, 1305–1308. 10.1515/BC.2002.147. PubMed DOI

Zhang L.; Jackson C. B.; Mou H.; Ojha A.; Peng H.; Quinlan B. D.; Rangarajan E. S.; Pan A.; Vanderheiden A.; Suthar M. S.; Li W.; Izard T.; Rader C.; Farzan M.; Choe H. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat. Commun. 2020, 11, 6013.10.1038/s41467-020-19808-4. PubMed DOI PMC

Bertram S.; Dijkman R.; Habjan M.; Heurich A.; Gierer S.; Glowacka I.; Welsch K.; Winkler M.; Schneider H.; Hofmann-Winkler H.; Thiel V.; Pohlmann S. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J. Virol. 2013, 87, 6150–6160. 10.1128/JVI.03372-12. PubMed DOI PMC

Zhou N.; Pan T.; Zhang J.; Li Q.; Zhang X.; Bai C.; Huang F.; Peng T.; Zhang J.; Liu C.; Tao L.; Zhang H. Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of Ebola virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). J. Biol. Chem. 2016, 291, 9218–9232. 10.1074/jbc.M116.716100. PubMed DOI PMC

Shah P. P.; Wang T.; Kaletsky R. L.; Myers M. C.; Purvis J. E.; Jing H.; Huryn D. M.; Greenbaum D. C.; Smith A. B. 3rd; Bates P.; Diamond S. L. A small-molecule oxocarbazate inhibitor of human cathepsin L blocks severe acute respiratory syndrome and Ebola pseudotype virus infection into human embryonic kidney 293T cells. Mol. Pharmacol. 2010, 78, 319–324. 10.1124/mol.110.064261. PubMed DOI PMC

Nie X.; Qian L.; Sun R.; Huang B.; Dong X.; Xiao Q.; Zhang Q.; Lu T.; Yue L.; Chen S.; Li X.; Sun Y.; Li L.; Xu L.; Li Y.; Yang M.; Xue Z.; Liang S.; Ding X.; Yuan C.; Peng L.; Liu W.; Yi X.; Lyu M.; Xiao G.; Xu X.; Ge W.; He J.; Fan J.; Wu J.; Luo M.; Chang X.; Pan H.; Cai X.; Zhou J.; Yu J.; Gao H.; Xie M.; Wang S.; Ruan G.; Chen H.; Su H.; Mei H.; Luo D.; Zhao D.; Xu F.; Li Y.; Zhu Y.; Xia J.; Hu Y.; Guo T. Multi-organ proteomic landscape of COVID-19 autopsies. Cell 2021, 184, 775–791. 10.1016/j.cell.2021.01.004. PubMed DOI PMC

Newman D. J.; Cragg G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. 10.1021/acs.jnatprod.9b01285. PubMed DOI

Christy M. P.; Uekusa Y.; Gerwick L.; Gerwick W. H. Natural products with potential to treat RNA virus pathogens including SARS-CoV-2. J. Nat. Prod. 2021, 84, 161–182. 10.1021/acs.jnatprod.0c00968. PubMed DOI PMC

Sudhan D. R.; Siemann D. W. Cathepsin L targeting in cancer treatment. Pharmacol. Ther. 2015, 155, 105–116. 10.1016/j.pharmthera.2015.08.007. PubMed DOI PMC

Schedel J.; Seemayer C. A.; Pap T.; Neidhart M.; Kuchen S.; Michel B. A.; Gay R. E.; Müller-Ladner U.; Gay S.; Zacharias W. Targeting cathepsin L (CL) by specific ribozymes decreases CL protein synthesis and cartilage destruction in rheumatoid arthritis. Gene Ther. 2004, 11, 1040–1047. 10.1038/sj.gt.3302265. PubMed DOI

Garsen M.; Rops A. L.; Dijkman H.; Willemsen B.; van Kuppevelt T. H.; Russel F. G.; Rabelink T. J.; Berden J. H.; Reinheckel T.; van der Vlag J. Cathepsin L is crucial for the development of early experimental diabetic nephropathy. Kidney Int. 2016, 90, 1012–1022. 10.1016/j.kint.2016.06.035. PubMed DOI

Li Y. Y.; Fang J.; Ao G. Z. Cathepsin B and L inhibitors: a patent review (2010 - present). Expert Opin. Ther. Pat. 2017, 27, 643–656. 10.1080/13543776.2017.1272572. PubMed DOI

Roth W.; Deussing J.; Botchkarev V. A.; Pauly-Evers M.; Saftig P.; Hafner A.; Schmidt P.; Schmahl W.; Scherer J.; Anton-Lamprecht I.; Von Figura K.; Paus R.; Peters C. Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and pertubation of hair follicle cycling. FASEB J. 2000, 14, 2075–2086. 10.1096/fj.99-0970com. PubMed DOI

Potts W.; Bowyer J.; Jones H.; Tucker D.; Freemont A. J.; Millest A.; Martin C.; Vernon W.; Neerunjun D.; Slynn G.; Harper F.; Maciewicz R. Cathepsin L-deficient mice exhibit abnormal skin and bone development and show increased resistance to osteoporosis following ovariectomy. Int. J. Exp. Pathol. 2004, 85, 85–96. 10.1111/j.0959-9673.2004.00373.x. PubMed DOI PMC

Petermann I.; Mayer C.; Stypmann J.; Biniossek M. L.; Tobin D. J.; Engelen M. A.; Dandekar T.; Grune T.; Schild L.; Peters C.; Reinheckel T. Lysosomal, cytoskeletal, and metabolic alterations in cardiomyopathy of cathepsin L knockout mice. FASEB J. 2006, 20, 1266–1268. 10.1096/fj.05-5517fje. PubMed DOI

Xu X.; Greenland J.; Baluk P.; Adams A.; Bose O.; McDonald D. M.; Caughey G. H. Cathepsin L protects mice from mycoplasmal infection and is essential for airway lymphangiogenesis. Am. J. Respir. Cell Mol. Biol. 2013, 49, 437–444. 10.1165/rcmb.2013-0016OC. PubMed DOI PMC

McKerrow J. H. Update on drug development targeting parasite cysteine proteases. PLoS Neglected Trop. Dis. 2018, 12, e0005850.10.1371/journal.pntd.0005850. PubMed DOI PMC

Koch J.; Uckeley Z. M.; Doldan P.; Stanifer M.; Boulant S.; Lozach P.-Y. TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. EMBO J. 2021, 40, e107821.10.15252/embj.2021107821. PubMed DOI PMC

Ou T.; Mou H.; Zhang L.; Ojha A.; Choe H.; Farzan M. Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathog. 2021, 17, e1009212.10.1371/journal.ppat.1009212. PubMed DOI PMC

Puelles V. G.; Lütgehetmann M.; Lindenmeyer M. T.; Sperhake J. P.; Wong M. N.; Allweiss L.; Chilla S.; Heinemann A.; Wanner N.; Liu S.; Braun F.; Lu S.; Pfefferle S.; Schröder A. S.; Edler C.; Gross O.; Glatzel M.; Wichmann D.; Wiech T.; Kluge S.; Pueschel K.; Aepfelbacher M.; Huber T. B. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 2020, 383, 590–592. 10.1056/NEJMc2011400. PubMed DOI PMC

Lukassen S.; Chua R. L.; Trefzer T.; Kahn N. C.; Schneider M. A.; Muley T.; Winter H.; Meister M.; Veith C.; Boots A. W.; Hennig B. P.; Kreuter M.; Conrad C.; Eils R. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020, 39, e105114.10.15252/embj.2020105114. PubMed DOI PMC

Tonge P. J. Quantifying the interactions between biomolecules: guidelines for assay design and data analysis. ACS Infect. Dis. 2019, 5, 796–808. 10.1021/acsinfecdis.9b00012. PubMed DOI PMC

Follenzi A.; Battaglia M.; Lombardo A.; Annoni A.; Roncarolo M. G.; Naldini L. Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 2004, 103, 3700–3709. 10.1182/blood-2003-09-3217. PubMed DOI

Aggarwal A.; Iemma T. L.; Shih I.; Newsome T. P.; McAllery S.; Cunningham A. L.; Turville S. G. Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog. 2012, 8, e1002762.10.1371/journal.ppat.1002762. PubMed DOI PMC

Tea F.; Ospina Stella A.; Aggarwal A.; Ross Darley D.; Pilli D.; Vitale D.; Merheb V.; Lee F. X. Z.; Cunningham P.; Walker G. J.; Fichter C.; Brown D. A.; Rawlinson W. D.; Isaacs S. R.; Mathivanan V.; Hoffmann M.; Pöhlman S.; Mazigi O.; Christ D.; Rockett R. J.; Sintchenko V.; Hoad V. C.; Irving D. O.; Dore G. J.; Gosbell I. B.; Kelleher A. D.; Matthews G. V.; Brilot F.; Turville S. G. SARS-CoV-2 neutralizing antibodies: Longevity, breadth, and evasion by emerging viral variants. PLoS Med. 2021, 18, e1003656.10.1371/journal.pmed.1003656. PubMed DOI PMC

Darabedian N.; Pratt M. R. Identifying potentially O-GlcNAcylated proteins using metabolic labeling, bioorthogonal enrichment, and Western blotting. Methods Enzymol. 2019, 622, 293–307. 10.1016/bs.mie.2019.02.017. PubMed DOI PMC

Harney D. J.; Cielesh M.; Chu R.; Cooke K. C.; James D. E.; Stöckli J.; Larance M. Proteomics analysis of adipose depots after intermittent fasting reveals visceral fat preservation mechanisms. Cell Rep. 2021, 34, 108804.10.1016/j.celrep.2021.108804. PubMed DOI

Walker G. J.; Clifford V.; Bansal N.; Stella A. O.; Turville S.; Stelzer-Braid S.; Klein L. D.; Rawlinson W. SARS-CoV-2 in human milk is inactivated by Holder pasteurisation but not cold storage. J. Paediatr. Child Health 2020, 56, 1872–1874. 10.1111/jpc.15065. PubMed DOI PMC

Aggarwal A.; Hitchen T. L.; Ootes L.; McAllery S.; Wong A.; Nguyen K.; McCluskey A.; Robinson P. J.; Turville S. G. HIV infection is influenced by dynamin at 3 independent points in the viral life cycle. Traffic 2017, 18, 392–410. 10.1111/tra.12481. PubMed DOI

Chou T. C. Preclinical versus clinical drug combination studies. Leuk. Lymphoma 2008, 49, 2059–2080. 10.1080/10428190802353591. PubMed DOI

Chou T. C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. 10.1158/0008-5472.CAN-09-1947. PubMed DOI

Chou T. C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681. 10.1124/pr.58.3.10. PubMed DOI

Chou T. C.; Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 1984, 22, 27–55. 10.1016/0065-2571(84)90007-4. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace