Effects of growth promoting microorganisms on tomato seedlings growing in different media conditions
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34731216
PubMed Central
PMC8565787
DOI
10.1371/journal.pone.0259380
PII: PONE-D-21-25205
Knihovny.cz E-zdroje
- MeSH
- Azospirillum brasilense fyziologie MeSH
- draslík chemie MeSH
- fenol analýza MeSH
- hořčík chemie MeSH
- kultivační média speciální chemie MeSH
- listy rostlin chemie růst a vývoj mikrobiologie MeSH
- mykorhiza fyziologie MeSH
- peroxidasa metabolismus MeSH
- semenáček růst a vývoj MeSH
- Solanum lycopersicum chemie růst a vývoj mikrobiologie MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- draslík MeSH
- fenol MeSH
- hořčík MeSH
- kultivační média speciální MeSH
- peroxidasa MeSH
Plant growth-promoting microbes (PGPM) play vital roles in maintaining crop fitness and soil health in stressed environments. Research have included analysis-based cultivation of soil-microbial-plant relationships to clarify microbiota potential. The goal of the research was to (i) evaluate the symbiotic microorganism effects on tomato seedling fitness under stressed conditions simulating a fragile soil susceptible to degradation; (ii) compare the plant-microbial interactions after inoculation with microbial isolates and fungi-bacteria consortia; (iii) develop an effective crop-microbial network, which improves soil and plant status. The experimental design included non-inoculated treatments with peat and sand at ratios of 50:50, 70:30, 100:0 (v:v), inoculated treatments with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ) using the aforementioned peat:sand ratios; and treatment with peat co-inoculated with AMF and Saccharothrix tamanrassetensis (S). AMF + AZ increased root fresh weight in peat substrate compared to the control (4.4 to 3.3 g plant-1). An increase in shoot fresh weight was detected in the AMF + AZ treatment with a 50:50 peat:sand ratio (10.1 to 8.5 g plant-1). AMF + AZ reduced antioxidant activity (DPPH) (18-34%) in leaves, whereas AMF + S had the highest DPPH in leaves and roots (45%). Total leaf phenolic content was higher in control with a decreased proportion of peat. Peroxidase activity was enhanced in AMF + AZ and AMF + S treatments, except for AMF + AZ in peat. Microscopic root assays revealed the ability of AMF to establish strong fungal-tomato symbiosis; the colonization rate was 78-89%. AMF + AZ accelerated K and Mg accumulation in tomato leaves in treatments reflecting soil stress. To date, there has been no relevant information regarding the successful AMF and Saccharothrix co-inoculation relationship. This study confirmed that AMF + S could increase the P, S, and Fe status of seedlings under high organic C content conditions. The improved tomato growth and nutrient acquisition demonstrated the potential of PGPM colonization under degraded soil conditions.
Zobrazit více v PubMed
EU Environment. (2021). Soil and Land. https://ec.europa.eu/environment/soil/index_en.htm [Accessed February 17, 2021].
Vimal SR, Singh JS, Arora NK, Singh S. Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere. 2017;27(2):177–192. doi: 10.1016/S1002-0160(17)60309-6 DOI
Onet A, Dincă LC, Grenni P, Laslo V, Teusdea AC, Vasile DL et al.. Biological indicators for evaluating soil quality improvement in a soil degraded by erosion processes. J Soils Sedim. 2019;19(5):2393–2404. doi: 10.1007/s11368-018-02236-9 DOI
Lehman MR, Cambardella CA, Stott DE, Acosta-Martinez V, Manter DK, Buyer JS et al.. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation. Sustainability. 2015;7:988–1027. doi: 10.3390/su7010988 DOI
Saia S, Rappa V, Ruisi P, Abenavoli MR, Sunseri F, Giambalvo D et al.. Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat. Front Plant Sci. 2015;6:815. doi: 10.3389/fpls.2015.00815 PubMed DOI PMC
Saia S, Ruisi P, Fileccia V, Di Miceli G, Amato G, Martinelli F. Metabolomics suggests that soil inoculation with arbuscular mycorrhizal fungi decreased free amino acid content in roots of durum wheat grown under N-limited, P-rich field conditions. PLoS One. 2015;10(6):e0129591. doi: 10.1371/journal.pone.0129591 PubMed DOI PMC
Szczałba M, Kopta T, Gastoł M, Sękara A. Comprehensive insight into arbuscular mycorrhizal fungi, Trichoderma spp. and plant multilevel interactions with emphasis on biostimulation of horticultural crops. J Appl Microbiol. 2019;127(3). doi: 10.1111/jam.14247 PubMed DOI
Saia S, Tamayo E, Schillaci C, De Vita P. Arbuscular mycorrhizal fungi and nutrient cycling in cropping systems. In: Datta R, Meena RS, Pathan SI, Ceccherini MT, editors. Carbon and nitrogen cycling in soil. Singapore: Springer; 2020. p. 87–115.
Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. 2009;321(1–2):341–361. doi: 10.1007/s11104-008-9568-6 DOI
Syed S, Tollamadugu NP. Role of Plant Growth-Promoting Microorganisms as a Tool for Environmental Sustainability. In: Viswanath B, editor. Recent Developments in Applied Microbiology and Biochemistry. New York: Academic Press; 2019. p. 209–222.
Hao L, Zhang Z, Hao B, Diao F, Zhang J, Bao Z et al.. Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Ecotoxicol Environ Saf. 2021; 212:111996. doi: 10.1016/j.ecoenv.2021.111996 PubMed DOI
Kleinert A, Benedito V, Morcillo R, Dames J, Cornejo-Rivas P, Zuniga-Feest A et al.. Morphological and Symbiotic Root Modifications for Mineral Acquisition from Nutrient-Poor Soils. Soil Biology. 2018;85–142.
Ditengou FA, Müller A, Rosenkranz M, Felten J, Lasok H, van Doorn MM et al.. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogammes root architecture. Nat Commun. 2015;6:6279. doi: 10.1038/ncomms7279 PubMed DOI PMC
Smith S.E., Smith F.A. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia. 2012;104:1–13. doi: 10.3852/11-229 PubMed DOI
Seguel A, Cornejo P, Ramos A, Von Baer E, Cumming J, Borie F. Phosphorus acquisition by three wheat cultivars contrasting in aluminum tolerance growing in an aluminum-rich volcanic soil. Crop Pasture Sci. 2017;68:305–316. doi: 10.1071/CP16224 DOI
Krishnamoorthy R, Kim K, Subramanian P, Senthilkumar M, Anandham R, Sa T. Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil. Agric Ecosyst Environ 2016; 231:233–239. doi: 10.1016/j.agee.2016.05.037 DOI
Ruiz-Lozano JM, Porcel R, Calvo-Polanco M, Aroca R. Improvement of Salt Tolerance in Rice Plants by Arbuscular Mycorrhizal Symbiosis. In: Giri B et al.., editors. Root Biology, Soil Biology. Springer International Publishing: 2018, p. 259–280.
Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ. Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol. 2012;38:651–664. doi: 10.1007/s10886-012-0134-6 PubMed DOI
Miozzi L, Vaira AM, Catoni M, Fiorilli V, Accotto GP, Lanfranco L. Arbuscular mycorrhizal symbiosis: plant friend or foe in the fight against viruses? Front Microbiol. 2019;10:1238. doi: 10.3389/fmicb.2019.01238 PubMed DOI PMC
Kim B, Brown R, Labeda D, Goodfellow M. Reclassification of ‘Dactylosporangium variesporum’ as Saccharothrix variisporea corrig. (ex Tomita et al. 1977) sp. nov., nom. rev. Int J Syst Evol Microbiol. 2011;61(2):310–314. PubMed
Merrouche R, Yekkour A, Lamari L, Zitouni A, Mathieu F, Sabaou N. Efficiency of Saccharothrix algeriensis NRRL B-24137 and its produced antifungal dithiolopyrrolones compounds to suppress Fusarium oxysporum-induced wilt disease occurring in some cultivated crops. Arabian J Sci Engin. 2017;42(6):2321–2327. doi: 10.1007/s13369-017-2504-4 DOI
Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils. 2015;51(4):403–415. doi: 10.1007/s00374-015-0996-1 DOI
Fukami J, Cerezin P, Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express. 2018;8:1–12. doi: 10.1186/s13568-017-0531-x PubMed DOI PMC
Fukami J, Nogueira M, Araujo R, Hungria M. Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express. 2016;6(3). doi: 10.1186/s13568-015-0171-y PubMed DOI PMC
Wallenstein MD. Managing and manipulating the rhizosphere microbiome for plant health: a systems approach. Rhizosphere. 2017;3:230–232. doi: 10.1016/j.rhisph.2017.04.004 DOI
Kong W, Meldgin DR, Collins JJ, Lu T. Designing microbial consortia with defined social interactions. Nat Chem Biol. 2018;14:821–829. doi: 10.1038/s41589-018-0091-7 PubMed DOI
Woo SL, Pepe O. Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front Plant Sci. 2018;9:1801. doi: 10.3389/fpls.2018.01801 PubMed DOI PMC
Barea JM. Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J Soil Sci Plant Nutr. 2015;15:261–282. doi: 10.4067/S0718-95162015005000021 DOI
Bidondo LF, Colombo R, Bompadre J, Benavides M, Scorza V, Silvani V et al.. Cultivable bacteria associated with infective propagules of arbuscular mycorrhizal fungi. Implications for mycorrhizal activity. Appl Soil Ecol. 2016;105:86–90. doi: 10.1016/j.apsoil.2016.04.013 DOI
Bitterlich M, Rouphael Y, Graefe J, Franken P. Arbuscular mycorrhizas: a promising component of plant production systems provided favorable conditions for their growth. Front Plant Sci. 2018;9:1329. doi: 10.3389/fpls.2018.01329 eCollection 2018. PubMed DOI PMC
Pedersen JF, Vogel KP, Funnell DL. Impact of reduced lignin on plant fitness. Crop Sci. 2005;45(3):812–819. doi: 10.2135/cropsci2004.0155 DOI
Kiers ET, Denison RF. Inclusive fitness in agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences. 2014;369(1642):20130367. doi: 10.1098/rstb.2013.0367 PubMed DOI PMC
Hart M, Ehret DL, Krumbein A, Leung C, Murch S, Turi C et al.. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza. 2015;25(5):359–376. doi: 10.1007/s00572-014-0617-0 PubMed DOI
Ahmed B, Zaidi A, Khan MS, Rizvi A, Saif S, Shahid M. Perspectives of plant growth promoting rhizobacteria in growth enhancement and sustainable production of tomato. In: Zaidi A, Khan M., editors. Microbial Strategies for Vegetable Production. Cham. Springer. 2017. p. 125–149.
Alabid I, Glaeser SP, Kogel KH. Endofungal bacteria increase fitness of their host fungi and impact their association with crop plants. Curr Issues Mol Biol. 2018;30(1):59–74. doi: 10.21775/cimb.030.059 PubMed DOI
Martin-Rivilla H, Garcia-Villaraco A, Ramos-Solano B, Gutierrez-Manero FJ, Lucas J. A. Improving flavonoid metabolism in blackberry leaves and plant fitness by using the bioeffector Pseudomonas fluorescens N 21.4 and its metabolic elicitors: A biotechnological approach for a more sustainable crop. J Agric Food Chem. 2020;68(22):6170–6180. doi: 10.1021/acs.jafc.0c01169 PubMed DOI
Inui Kishi RN, Galdiano Júnior RF, Val-Moraes SP, Kishi LT. Soil Microbiome and Their Effects on Nutrient Management for Plants. In: Kumar V, Kumar M, Sharma S, Prasad R, editors. Probiotics in Agroecosystem. Singapore: Springer. 2017. 10.1007/978-981-10-4059-7_6. DOI
Smith FA, Smith SE. How useful is the mutualism-parasitism continuum of arbuscular mycorrhizal functioning? Plant Soil. 2013;363:7–18. doi: 10.1007/s11104-012-1583-y DOI
O’Callaghan M. Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol Biotechnol. 2016;100(13):5729–5746. doi: 10.1007/s00253-016-7590-9 PubMed DOI PMC
Shirling ET, Gottlieb D. Methods for characterization of Streptomyces species. Int J Sys Bacteriol. 1966;16(3):313–340. doi: 10.1099/00207713-16-3-313 DOI
Nowosielski O. Methods of fertilization need estimation. Warsaw: PWRiL; 1974. p. 1–91.
Schmidt SK, Sobieniak-Wiseman LC, Kageyama SA, Halloy SRP, Schadt CW. Mycorrhizal and Dark-Septate Fungi in Plant Roots Above 4270 Meters Elevation in the Andes and Rocky Mountains. Arct Antarc Alp. 2008;40(3):576–583, doi: 10.1657/1523-0430(07-068)[SCHMIDT]2.0.CO;2 DOI
Diagne N, Escoute J, Lartaud M, Verdeil J, Franche C, Kane A et al.. Uvitex2B: a rapid and efficient stain for detection of arbuscular mycorrhizal fungi within plant roots. Mycorrhiza. 2011;21(4):315–321. doi: 10.1007/s00572-010-0357-8 PubMed DOI
Vierheilig H, Schweiger P, Brundrett M. An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant. 2005;125:393–404. doi: 10.1111/j.1399-3054.2005.00564.x DOI
Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980;84:489–500. doi: 10.1111/j.1469-8137.1980.tb04556.x DOI
Sarker U, Oba S. Color attributes, betacyanin, and carotenoid profiles, bioactive components, and radical quenching capacity in selected Amaranthus gangeticus leafy vegetables. Sci Rep. 2021;11(1):1–14. PubMed PMC
Molyneux P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol. 2004;26:211–219.
Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compound. Food Chem. 2006;97:654–660. doi: 10.1016/j.foodchem.2005.04.028 DOI
Lück H. Peroxidase. In: Bergmeyer HU, editor. Methoden der enzymatischen analyse. Germany: Weinheim; 1962. p. 895–897.
Pasławski P, Migaszewski ZM. The quality of element determinations in plant materials by instrumental methods. Pol J Environ Stud. 2006;15(2a):154–164.
Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965;52:591–611. doi: 10.2307/2333709 DOI
Levene H. Robust tests for equality of variances. In: Contributions to probability and statistics Essays in honor of Harold Hotelling. 1961.p. 279–292.
Balliu A, Sallaku G, Rewald B. AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability. 2015;7(12):15967–15981. doi: 10.3390/su71215799 DOI
Niemiec M, Chowaniak M, Zuzek D, Komorowska M, Mamurovich GS, Kodirov Gafurovich K et al.. Evaluation of the chemical composition of soil as well as vine leaves and berries from the selected commercial farms in the republic of Tajikistan. J Elementol. 2020;25(2):675–686. doi: 10.5601/jelem.2019.24.4.1810 DOI
Rashidov N, Chowaniak M, Niemiec M. Assessment of the impact of differences in fertilization on selected yield indices for grapes in the Sughd Region of Tajikistan. J Elementol. 2020;25(4):1257–1268. doi: 10.5601/jelem.2019.24.2.1863 DOI
Kremenetskaya I, Ivanova L, Chislov M, Zvereva I, Vasilieva T, Marchevskaya V et al.. Physicochemical transformation of expanded vermiculite after long-term use in hydroponics. Appl Clay Sci. 2020;198(15):105839. doi: 10.1016/j.clay.2020.105839 DOI
Niemiec M, Chowaniak M, Sikora J, Szeląg-Sikora A, Grodek-Szostak Z, Komorowska M. Selected properties of soils for long-term use in organic farming. Sustainability. 2020;12(6):2509. doi: 10.3390/su12062509 DOI
Al-Karaki GN. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza. 2000;10(2):51–54. doi: 10.1007/s005720000055 DOI
Ribaudo CM, Krumpholz EM, Cassán FD, Bottini R, Cantore ML, Cura JA. Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul. 2006;25:175–185. doi: 10.1007/s00344-005-0128-5 DOI
Battini F, Cristani C, Giovannetti M, Agnolucci M. Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiol Res. 2016;183:68–79. doi: 10.1016/j.micres.2015.11.012 PubMed DOI
Paranavithana TM, Marasinghe S, Perera GAD, Ratnayake RR. Effects of crop rotation on enhanced occurrence of arbuscular mycorrhizal fungi and soil carbon stocks of lowland paddy fields in seasonaly dry tropics. Paddy Water Environ. 2020;19(1):217–226. doi: 10.1007/s10333-020-00833-4 DOI
Zho J, Zang HD, Loeppmann S, Gube M, Kuzyakov Y, Pausch J. Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter. Soil Biol Biochem. 2020;140:107641. doi: 10.1016/j.soilbio.2019.107641 DOI
Oliveira T, Carvalho L, Oliveira L, Lacerda W, Acerbi FJr. NDVI time series for mapping phonological variability of forests across the cerrado biome in Minas Gerais, Brazil. In: Ed. Zhang X, editor. Phenology and Climate Change. Shanghai, China: In Tech; 2012. p. 253–272.
Cristiano P, Madanes N, Campanello P, di Francescantonio D, Rodríguez S, Zhang Y et al.. High NDVI and potential canopy photosynthesis of South American subtropical forests despite seasonal changes in leaf area index and air temperature. Forests. 2014; 5(2), 287–308. doi: 10.3390/f5020287 DOI
Nogales A, Santos E, Abreu M, Arán D, Victorino G, Pereira H et al.. Mycorrhizal inoculation differentially affects grapevine’s performance in copper contaminated and non-contaminated soils. Front. Plant Sci. 2019;9. doi: 10.3389/fpls.2018.01906 PubMed DOI PMC
Hogewoning S, Wientjes E, Douwstra P, Trouwborst G, van Ieperen W, Croce R et al.. Photosynthetic quantum yield dynamics: from photosystems to leaves. Plant Cell. 2012;24(5):1921–1935. doi: 10.1105/tpc.112.097972 PubMed DOI PMC
Ihuoma SO, Madramootoo CA. Narrow-band reflectance indices for mapping the combined effects of water and nitrogen stress in field grown tomato crops. Biosys Eng. 2020;192:133–143. doi: 10.1016/j.biosystemseng.2020.01.017 DOI
Vazquez MM, Cesar S, Azcon R, Barea JM. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol. 2000;15(3):261–272. doi: 10.1016/S0929-1393(00)00075-5 DOI
Sellitto VM, Golubkina NA, Pietrantonio L, Cozzolino E, Cuciniello A, Cenvinzo V et al.. Tomato yield, quality, mineral composition and antioxidants as affected by beneficial microorganisms under soil salinity induced by balanced nutrient solutions. Agriculture. 2019;9(5):110. doi: 10.3390/agriculture9050110 DOI
Inculet C-S, Mihalache G, Sellitto VM, Hlihor R-M, Stoleru V. The effects of a microorganisms-based commercial product on the morphological, biochemical and yield of tomato plants under two different water regimes. Microorganisms. 2019;7(12):706. doi: 10.3390/microorganisms7120706 PubMed DOI PMC
Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 2019;24(13):2452. doi: 10.3390/molecules24132452 PubMed DOI PMC
Sarker U, Oba S. The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front Plant Sci. 2020;11. doi: 10.3389/fpls.2020.559876 PubMed DOI PMC
Achten WM, Maes W, Reubens B, Mathijs E, Singh VP, Verchot L et al.. Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass Bioenergy. 2010;34(5):667–676.
Sarker U, Oba S. Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci rep. 2018;8(1):1–12. doi: 10.1038/s41598-017-17765-5 PubMed DOI PMC
Sarker U, Oba S. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content. Food chem. 2018;252:72–83. doi: 10.1016/j.foodchem.2018.01.097 PubMed DOI
Sarker U, Islam MT, Oba S. Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves. PLos One. 2018;13(11):e0206388. doi: 10.1371/journal.pone.0206388 PubMed DOI PMC
Sarker U, Oba S. Salinity stress enhances color parameters, bioactive leaf pigments, vitamins, polyphenols, flavonoids and antioxidant activity in selected Amaranthus leafy vegetables. J Sci Food Agric. 2019;99(5):2275–2284. doi: 10.1002/jsfa.9423 PubMed DOI
Sarker U, Oba S. Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress. Scientific reports. 2018;8(1): 1–9. doi: 10.1038/s41598-017-17765-5 PubMed DOI PMC
Sarker U, Oba S. Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant biology. 2018;18(1):1–15. doi: 10.1186/s12870-017-1213-1 PubMed DOI PMC
Sarker U, Hossain MN, Iqbal MA, Oba S. Bioactive components and radical scavenging activity in selected advance lines of salt-tolerant vegetable amaranth. Frontiers in Nutrition. 2020;7. doi: 10.3389/fnut.2020.587257 PubMed DOI PMC
Sarker U, Oba S. Polyphenol and flavonoid profiles and radical scavenging activity in leafy vegetable Amaranthus gangeticus. BMC Plant Biology. 2020;20(1):1–12. doi: 10.1186/s12870-019-2170-7 PubMed DOI PMC
Seneviratne G, Jayasinghearachchi HS. Mycelial colonization by bradyrhizobia and azorhizobia. J Biosci. 2003;28:243–247. doi: 10.1007/BF02706224 PubMed DOI
Sarker U, Oba S. Nutritional and bioactive constituents and scavenging capacity of radicals in Amaranthus hypochondriacus. Sci Rep. 2020;10(1):1–10. doi: 10.1038/s41598-019-56847-4 PubMed DOI PMC
Marjamaa K, Kukkola EM, Fagerstedt KV. The role of xylem class III peroxidases in lignification. J Exp Bot. 2009;60:367–376. doi: 10.1093/jxb/ern278 PubMed DOI
Spadaro D, Droby S. Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol. 2016;47:39–49. doi: 10.1016/j.tifs.2015.11.003 DOI
Islam F, Yasmeen T, Arif MS, Ali S, Ali B, Hameed S et al.. Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul. 2015;80:23–36. doi: 10.1007/s10725-015-0142-y DOI
Nanjundappa A, Bagyaraj DJ, Saxena AK, Kumar M, Chakdar H. Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biol Biotechnol. 2019;6:23. doi: 10.1186/s40694-019-0086-5 PubMed DOI PMC
Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK et al.. Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena V, Maurya B, Verma J, Meena R, editors. Potassium Solubilizing Microorganisms for Sustainable Agriculture. New Delhi:Springer; 2016.
Singh NP, Singh RK, Meena VS, Meena RK. Can we use maize (Zea mays) rhizobacteria as plant growth promoter. Vegetos. 2015;28(1):86–99. doi: 10.5958/2229-4473.2015.00012.9 DOI
Liu J, Hu T, Feng P, Wang L, Yang S. Tomato yield and water use efficiency change with various soil moisture and potassium levels during different growth stages. PLoS One. 2019;14(3):e0213643. doi: 10.1371/journal.pone.0213643 PubMed DOI PMC
Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H. Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza. 2011;21:117–129. doi: 10.1007/s00572-010-0316-4 PubMed DOI
Estrada B, Aroca R, Maathuis FJM, Barea JM, Ruiz-Lozano JM. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ. 2013;36:1771–1782. doi: 10.1111/pce.12082 PubMed DOI
Ziane H, Meddad-Hamza A, Beddiar A, Gianinazzi S. Effects of arbuscular mycorrhizal fungi and fertilization levels on industrial tomato growth and production. Int J Agric Biol. 2017;19(2):341–347. doi: 10.17957/IJAB/15.0287 DOI
Nacoon S, Jogloy S, Riddech N, Mongkolthanaruk W, Kuyper TW, Boonlue S. Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of Helianthus tuberosus L. Sci Rep. 2020;10:1–10. doi: 10.1038/s41598-019-56847-4 PubMed DOI PMC
Sharma S, Compant S, Ballhausen MB, Ruppel S, Franken P. The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum. Microbiol Res. 2020;240:126556. doi: 10.1016/j.micres.2020.126556 PubMed DOI
Saia S, Aissa E, Luziatelli F, Ruzzi M, Colla G, Ficca AG et al.. Growth-promoting bacteria and arbuscular mycorrhizal fungi differentially benefit tomato and corn depending upon the supplied form of phosphorus. Mycorrhiza. 2020;30(1):133–147. doi: 10.1007/s00572-019-00927-w PubMed DOI
Gransee A, Führs H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil. 2013;368:5–21. doi: 10.1007/s11104-012-1567-y DOI
Azcón R, Ambrosano E, Charest C. Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sci. 2003;165:1137–1145. doi: 10.1016/S0168-9452(03)00322-4 DOI