Morpho-physiological and biochemical attributes of Chili (Capsicum annum L.) genotypes grown under varying salinity levels

. 2021 ; 16 (11) : e0257893. [epub] 20211104

Status odvoláno Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem, odvolaná publikace

Perzistentní odkaz   https://www.medvik.cz/link/pmid34735478

Climate change is causing soil salinization, resulting in huge crop losses throughout the world. Multiple physiological and biochemical pathways determine the ability of plants to tolerate salt stress. Chili (Capsicum annum L.) is a salt-susceptible crop; therefore, its growth and yield is negatively impacted by salinity. Irreversible damage at cell level and photo inhibition due to high production of reactive oxygen species (ROS) and less CO2 availability caused by water stress is directly linked with salinity. A pot experiment was conducted to determine the impact of five NaCl salinity levels, i.e., 0,1.5, 3.0, 5.0 and 7.0 dS m-1 on growth, biochemical attributes and yield of two chili genotypes ('Plahi' and 'A-120'). Salinity stress significantly reduced fresh and dry weight, relative water contents, water use efficiency, leaf osmotic potential, glycine betaine (GB) contents, photosynthetic rate (A), transpiration rate (E), stomatal conductance (Ci), and chlorophyll contents of tested genotypes. Salinity stress significantly enhanced malondialdehyde (MDA) contents and activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). In addition, increasing salinity levels significantly reduced the tissue phosphorus and potassium concentrations, while enhanced the tissue sodium and chloride concentrations. Genotype 'Plahi' had better growth and biochemical attributes compared to 'A-120'. Therefore, 'Plahi' is recommended for saline areas to improve chili production.

Odvolání publikace

PubMed

Zobrazit více v PubMed

Rengasamy P. Soil processes affecting crop production in salt affected soils. Funct. Plant Biol.2010,37, 613–620.

Shahid S.A.; Zaman M.; Heng L. Soil salinity: historical perspectives and a world overview of the problem. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham. 2018, 43–53.

Hussain S.; Shaukat M.; Ashraf M.; Zhu C.; Jin Q.; Zhang J. Salinity Stress in Arid and Semi-Arid Climates: Effects and Management in Field Crops. Clim Change Agri.2019, doi: 10.5772/intechopen.87982 DOI

Butt M.; Sattar A; Abbas T. Foliage applied proline induces salt tolerance in chili genotypes by regulating photosynthetic attributes, ionic homeostasis, and antioxidant defense mechanisms. Hortic. Environ. Biotechnol. 2020, doi: 10.1007/s13580-020-00236-8 DOI

Faried H.N.; Ayyub C.M.; Muhammad A. Salinity impairs ionic, physiological and biochemical attributes in potato. Pak. J. Agric. Sci.2016,53, 17–25.

Wild A. Soils, Land and Food: Managing the Land During the 21st Century. Cambridge University Press, Cambridge, UK. 2003.

Munns R.; Tester M. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol.2008,59, 651–681. doi: 10.1146/annurev.arplant.59.032607.092911 PubMed DOI

Bojórquez-Quintal J.E.; Echevarría-Machado I.; Medina-Lara F.; Martinez-Estevez M. Plants challenges in a salinized world: the case of Capsicum. Afri. J. Biotech.2012,11, 3614–13626.

Shaheen S.; Naseer S.; Ashraf M.; Akram N.A. Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. J Plant Interac. 2013, 8, 85–96.

De Oliveira A.B.; Alencar N.L.M.; Gomes-Filho E. Comparison between the water and salt stress effects on plant growth and development. In: Akinci S (ed) Responses of organisms to water stress.IntechOpen, London, 2013, pp 67–94. 10.5772/54223. DOI

Kissoudis C.; Sunarti S.; van de Wiel C.; Visser R.G.F.; van der Linden C.G.; Bai Y. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism. J. Exp. Bot.2016,67, 5119–5132. doi: 10.1093/jxb/erw285 PubMed DOI PMC

Zhu J.K. Salt and drought stress signal transduction in plants. Ann. J. Plant Biol.2002,14, 267–273. https: //doi.org/10.1146/annurev.arpla nt.53.09140 1.14332 9 PubMed PMC

Munns R.; James R.A.; Lauchli A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot.2006,57, 1025–1043. doi: 10.1093/jxb/erj100 PubMed DOI

Hussain S.; Khaliq A.; Matloob A.; Wahid M.A.; Afzal I. Germination and growth response of three wheat cultivars to NaCl salinity. Soil Environ.2013,32, 36–43.

Chaichi M.R.; Keshavarz-Afshar R.; Lu B.; Rostamza M. Growth and nutrient uptake of tomato in response to application of saline water, biological fertilizer, and surfactant. J. Plant Nutr.2017,40, 457–466.

Cuin T.A.; Shabala S. Compatible solutes reduce ROS-induced potassium efflux in arabidopsis roots. Plant Cell Environ.2007,30, 875–885. doi: 10.1111/j.1365-3040.2007.01674.x PubMed DOI

Mansour M.M.; Ali E.F. Evaluation of proline functions in saline conditions. Phytochem.2017,140, 52–68. doi: 10.1016/j.phytochem.2017.04.016 PubMed DOI

Ashraf M.; Foolad M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot.2007,59, 206–216.

Sakr M.T.; Sarkassy E.I.; Fuller M. Osmoregulators proline and glycine betaine counteract salinity stress in canola. Agron. Sustain. Dev.2012,32, 747–754.

Hernandez J.A.; Ferrer M.A.; Jimenez. A.; Barcelo, R.A.; Sevilla, F. Antioxidant systems and O2 /H2O2 production in the apoplast of pea leaves. Its relation with salt induced necrotic lesions in minor veins. Plant Physiol.2001,127, 817–831. doi: 10.1104/pp.010188 PubMed DOI PMC

Gao S.; Ouyang C.; Wang S.; Xu Y.; Tang L.; Chen F. Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonialyase activities in Jatropha curcas L. seedlings. Plant Soil Environ.2009,54: 374–381.

Zhang P.; Senge M.; Dai Y. Effect of salinity stress at different growth stages on tomato growth, yield, and water-use efficiency. Commun. Soil Sci. Plant Anal.2017,48, 624–634. 10.1080/00103624.2016.1269803. DOI

Zushi K.; Matsuzoe N. Using a chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. Sci. Hortic.2017,219, 216–221. 10.1016/j.scienta.2017.03.016. DOI

Chookhampaeng S. The effect of salt stress on growth, chlorophyll content proline content and antioxidative enzymes of pepper (Capsicum Annuum L.) seedling. Eur. J. Sci. Res.2011,49, 103–109.

Gammoudi N.; Yahia L.B.; Lachiheb B.; Ferchichi A. Salt response in pepper (Capsicum annuum L.): components of photosynthesis inhibition, proline accumulation and K+/Na+ selectivity. 2016.

Butt M.; Ayyub C.M.; Amjad M. Proline application enhances growth of chili by improving physiological and biochemical attributes under salt stress. Pak. J. Agric. Sci.2016,53, 43–49.

Wolf B.A. Comparative system of leaf analysis and its use for diagnosing nutrient status. Commun. Soil Sci. Plant Anal.1990,13, 1053–105.

Sairam R.K.; Rao K.V.; Srivastava G.C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci.2002,163, 1037–1046.

Zekri M. Effects of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings. Sci. Hort. 1991,47, 305–315.

Heath R.L.; Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophy.1968,125, 189–198. doi: 10.1016/0003-9861(68)90654-1 PubMed DOI

Bates L.S.; Waldren R.P.; Teare E.D. Rapid determination of free proline for water stress studies. Plant Soil 1973,39, 205–208.

Giannopolitis C.N.; Ries S.K. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol.1977,59, 309–314. doi: 10.1104/pp.59.2.309 PubMed DOI PMC

Chance M.; Maehly A.C. Assay of catalases and peroxidases. Methods of Enzymol.1955,2, 764–817. PubMed

Rehman S.; Harris P.J.C.; Ashraf M. Stress environments and their impact on crop production. In: Abiotic Stresses: Plant Resistance through Breeding and Molecular Approaches. Ashraf M. and Harris P.J.C. (Eds.) Haworth Press, New York, 2005, pp. 3–18.

Sharma C.; Singh N.; Pal K. The effect of salt stress on biochemicals of chili at seedling level. Int. J. Pharma Prof. Res.2012,3, 665–670.

Abbas S.; Latif H.H.; Elsherbiny E.A. Effect of 24-epibrassinolide on the physiological and genetic changes on two varieties of pepper under salt stress conditions. Pak. J. Bot. 45, 1273–1284.

Afzal M.; Ahmad A.; Alderfasi A.A.1; Ghoneim A.; Saqib M Physiological tolerance and cation accumulation of different genotypes of Capsicum annum under varying salinity stress. Int. Acad. Ecol. Environ. Sci.2014,4, 39–49.

Azuma R.; Ito N.; Nakayama N.; Suwa R.; Nguyen N.T.; Larrinaga-Mayoral J.; et al.. Fruits are more sensitive to salinity than leaves and stems in pepper plants (Capsicum annuum L.). Sci. Hort. 2010,125, 171–178.

Gorai M.; Ennajeh M.; Khemira H.; Neffati M. Combined effect of NaCl-salinity and hypoxia on growth, photosynthesis, water relations and solute accumulation in Phragmite saustralis plants. Flora.2010,205, 462–470.

De Pascale S.; Maggio A.; Raimondi G.; Martino A. Salt stress response in tomato beyond the salinity tolerance threshold. Environ. Exp. Bot.2007,59, 276–282. 10.1016/j.envexpbot.2006.02.002. DOI

Suarez N. Effects of short-and long-term salinity on leaf water relations, gas exchange and growth in Ipomoea pescaprae. Flora.2010,26, 267–275.

Sucre B.; Suarez N. Effect of salinity and PEG-induced water stress on water status, gas exchange, solute accumulation, and leaf growth in Ipomoea pescaprae. Environ. Exp. Bot. 2011,70, 192–203.

Liang Y.C.; Chen Q.; Liu Q.; Zhang W.; Ding R. Effects of silicon on salinity tolerance of two barley genotypes. J. Plant Physiol.2003,160, 1157–1164. doi: 10.1078/0176-1617-01065 PubMed DOI

Ruiz J.M.; Blasco B.; Rivero R.M.; Romero L. Nicotine-free and salt-tolerant tobacco plants obtained by grafting to salinity-resistant rootstocks of tomato. Plant Physiol.2005,124, 465–475.

Xiong L.; Zhu J.K. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ.2002,25, 131–139. doi: 10.1046/j.1365-3040.2002.00782.x PubMed DOI

Larcher W. Physiological Plant Ecology. (4th Ed.) Springer-Verlag; Berlin Heidelberg. 2003.

Turkan I.; Demiral T. Recent developments in understanding salinity tolerance. Environ. Exp. Bot.2009,67, 2–9.

Ashram M.A,; Ashraf M.; Shahbaz M. Growth stage-based modulation in antioxidant defense system and proline accumulation in two hexaploid wheat (Triticum aestivum L.) cultivars differing in salinity tolerance. Flora.2007,207, 388–397. doi: 10.1157/13108756 PubMed DOI

Miranda G.; Fischer G.; Mewis I.; Rohn S.; Ulrichs C. Salinity effects on proline accumulation and total antioxidant activity in leaves of the cape gooseberry (Physalis peruviana L.). J. App. Bot. Food Quality.2014,87, 67–73.

Genard H.; Saos J.L.; Hillard J.; Tremolieres A.; Boucaud J. Effect of salinity on lipid composition, glycinebetaine content and photosynthetic activity in chloroplasts of Suaeda maritima. Plant Physiol. Biochem.1991,29, 421–427.

Hajlaoui H.; El-Ayeb N.; Garrec J.P.; Denden M.; Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Indus. Crops Prod.2010, 31, 122–130.

Hassine A.B.; Lutts S. Differential responses of saltbush Atriplex halimus L. exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene. J. Plant Physiol.2010,167, 1448–1456. doi: 10.1016/j.jplph.2010.05.017 PubMed DOI

Ali Q.; Ashraf M.; Athar H. Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pak. J. Bot.2007,39, 1133–1144.

Flexas J.; Diaz-Espejo A.; Galmes J.; Kaldenhoff R.; Medrano H.; Ribas-Carbo M. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ.2007,30, 1284–1298. doi: 10.1111/j.1365-3040.2007.01700.x PubMed DOI

Lawlor D.W.; Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficit in higher plants. Plant Cell Environ.2002,25, 255–294. PubMed

Souza R.P.; Machado E.C.; Silva J.A.B.; Lagôa A.M.M.A.; Silveira J.A.G. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ. Exp. Bot.2004,51, 45–56.

Misra A.N.; Biswal A.K.; Misra M. Physiological, biochemical and molecular aspects of water stress responses in plants and the biotechnological applications. Proc. Nat. Acad. Sci.2002,72, 115–134.

Munns R. Comparative physiology of salt and water stress. Plant Cell Environ.2002,25, 239–250. doi: 10.1046/j.0016-8025.2001.00808.x PubMed DOI

Neocleous D.; Vasilakakis M. Effect of NaCl stress on red raspberry (Rubus idoeus L. Autumn Bliss). Sci. Hort. 2007,112, 282–289.

Ashraf M. Relationships between growth and gas exchange characteristics in some salt-tolerant amphidiploid Brassica species in relation to their diploid parents. Environ. Exp. Bot.2001,45, 155–163. doi: 10.1016/s0098-8472(00)00090-3 PubMed DOI

Heidari M. Nucleic acid metabolism, proline concentration and antioxidants enzyme activity in canola (Brassica nupus L.) under salinity stress. Agric. Sci. China.2010,9, 504–511.

Sergio L.; De-Paola A.; Cantore V.; Pieralice M.; Cascareno N.A.; Bianco V.V.; et al.. Effect of salt stress on growth parameters, enzymatic antioxidant system, and lipid peroxidation in wild chicory (Cichorium intybus). Acta. Physiol. Plant.2012, 34, 2349–2358.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...