Morpho-physiological and biochemical attributes of Chili (Capsicum annum L.) genotypes grown under varying salinity levels
Status odvoláno Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, odvolaná publikace
PubMed
34735478
PubMed Central
PMC8568292
DOI
10.1371/journal.pone.0257893
PII: PONE-D-21-23337
Knihovny.cz E-zdroje
- MeSH
- Capsicum genetika růst a vývoj MeSH
- chlorid sodný škodlivé účinky MeSH
- chlorofyl genetika MeSH
- draslík metabolismus MeSH
- genotyp MeSH
- listy rostlin genetika růst a vývoj MeSH
- malondialdehyd metabolismus MeSH
- peroxidasa genetika MeSH
- reaktivní formy kyslíku metabolismus MeSH
- salinita * MeSH
- sodík metabolismus MeSH
- solný stres genetika MeSH
- superoxiddismutasa genetika MeSH
- tolerance k soli genetika MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- odvolaná publikace MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorid sodný MeSH
- chlorofyl MeSH
- draslík MeSH
- malondialdehyd MeSH
- peroxidasa MeSH
- reaktivní formy kyslíku MeSH
- sodík MeSH
- superoxiddismutasa MeSH
- voda MeSH
Climate change is causing soil salinization, resulting in huge crop losses throughout the world. Multiple physiological and biochemical pathways determine the ability of plants to tolerate salt stress. Chili (Capsicum annum L.) is a salt-susceptible crop; therefore, its growth and yield is negatively impacted by salinity. Irreversible damage at cell level and photo inhibition due to high production of reactive oxygen species (ROS) and less CO2 availability caused by water stress is directly linked with salinity. A pot experiment was conducted to determine the impact of five NaCl salinity levels, i.e., 0,1.5, 3.0, 5.0 and 7.0 dS m-1 on growth, biochemical attributes and yield of two chili genotypes ('Plahi' and 'A-120'). Salinity stress significantly reduced fresh and dry weight, relative water contents, water use efficiency, leaf osmotic potential, glycine betaine (GB) contents, photosynthetic rate (A), transpiration rate (E), stomatal conductance (Ci), and chlorophyll contents of tested genotypes. Salinity stress significantly enhanced malondialdehyde (MDA) contents and activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). In addition, increasing salinity levels significantly reduced the tissue phosphorus and potassium concentrations, while enhanced the tissue sodium and chloride concentrations. Genotype 'Plahi' had better growth and biochemical attributes compared to 'A-120'. Therefore, 'Plahi' is recommended for saline areas to improve chili production.
College of Agriculture Bahauddin Zakariya University Bahadur Sub Campus Layyah Layyah Pakistan
Department of Biotechnology College of Science Taif University Taif Saudi Arabia
Department of Horticulture MNS Agriculture University Multan Pakistan
Department of Plant Physiology Slovak University of Agriculture Nitra Slovakia
Zobrazit více v PubMed
Rengasamy P. Soil processes affecting crop production in salt affected soils. Funct. Plant Biol.2010,37, 613–620.
Shahid S.A.; Zaman M.; Heng L. Soil salinity: historical perspectives and a world overview of the problem. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham. 2018, 43–53.
Hussain S.; Shaukat M.; Ashraf M.; Zhu C.; Jin Q.; Zhang J. Salinity Stress in Arid and Semi-Arid Climates: Effects and Management in Field Crops. Clim Change Agri.2019, doi: 10.5772/intechopen.87982 DOI
Butt M.; Sattar A; Abbas T. Foliage applied proline induces salt tolerance in chili genotypes by regulating photosynthetic attributes, ionic homeostasis, and antioxidant defense mechanisms. Hortic. Environ. Biotechnol. 2020, doi: 10.1007/s13580-020-00236-8 DOI
Faried H.N.; Ayyub C.M.; Muhammad A. Salinity impairs ionic, physiological and biochemical attributes in potato. Pak. J. Agric. Sci.2016,53, 17–25.
Wild A. Soils, Land and Food: Managing the Land During the 21st Century. Cambridge University Press, Cambridge, UK. 2003.
Munns R.; Tester M. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol.2008,59, 651–681. doi: 10.1146/annurev.arplant.59.032607.092911 PubMed DOI
Bojórquez-Quintal J.E.; Echevarría-Machado I.; Medina-Lara F.; Martinez-Estevez M. Plants challenges in a salinized world: the case of Capsicum. Afri. J. Biotech.2012,11, 3614–13626.
Shaheen S.; Naseer S.; Ashraf M.; Akram N.A. Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. J Plant Interac. 2013, 8, 85–96.
De Oliveira A.B.; Alencar N.L.M.; Gomes-Filho E. Comparison between the water and salt stress effects on plant growth and development. In: Akinci S (ed) Responses of organisms to water stress.IntechOpen, London, 2013, pp 67–94. 10.5772/54223. DOI
Kissoudis C.; Sunarti S.; van de Wiel C.; Visser R.G.F.; van der Linden C.G.; Bai Y. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism. J. Exp. Bot.2016,67, 5119–5132. doi: 10.1093/jxb/erw285 PubMed DOI PMC
Zhu J.K. Salt and drought stress signal transduction in plants. Ann. J. Plant Biol.2002,14, 267–273. https: //doi.org/10.1146/annurev.arpla nt.53.09140 1.14332 9 PubMed PMC
Munns R.; James R.A.; Lauchli A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot.2006,57, 1025–1043. doi: 10.1093/jxb/erj100 PubMed DOI
Hussain S.; Khaliq A.; Matloob A.; Wahid M.A.; Afzal I. Germination and growth response of three wheat cultivars to NaCl salinity. Soil Environ.2013,32, 36–43.
Chaichi M.R.; Keshavarz-Afshar R.; Lu B.; Rostamza M. Growth and nutrient uptake of tomato in response to application of saline water, biological fertilizer, and surfactant. J. Plant Nutr.2017,40, 457–466.
Cuin T.A.; Shabala S. Compatible solutes reduce ROS-induced potassium efflux in arabidopsis roots. Plant Cell Environ.2007,30, 875–885. doi: 10.1111/j.1365-3040.2007.01674.x PubMed DOI
Mansour M.M.; Ali E.F. Evaluation of proline functions in saline conditions. Phytochem.2017,140, 52–68. doi: 10.1016/j.phytochem.2017.04.016 PubMed DOI
Ashraf M.; Foolad M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot.2007,59, 206–216.
Sakr M.T.; Sarkassy E.I.; Fuller M. Osmoregulators proline and glycine betaine counteract salinity stress in canola. Agron. Sustain. Dev.2012,32, 747–754.
Hernandez J.A.; Ferrer M.A.; Jimenez. A.; Barcelo, R.A.; Sevilla, F. Antioxidant systems and O2 /H2O2 production in the apoplast of pea leaves. Its relation with salt induced necrotic lesions in minor veins. Plant Physiol.2001,127, 817–831. doi: 10.1104/pp.010188 PubMed DOI PMC
Gao S.; Ouyang C.; Wang S.; Xu Y.; Tang L.; Chen F. Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonialyase activities in Jatropha curcas L. seedlings. Plant Soil Environ.2009,54: 374–381.
Zhang P.; Senge M.; Dai Y. Effect of salinity stress at different growth stages on tomato growth, yield, and water-use efficiency. Commun. Soil Sci. Plant Anal.2017,48, 624–634. 10.1080/00103624.2016.1269803. DOI
Zushi K.; Matsuzoe N. Using a chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. Sci. Hortic.2017,219, 216–221. 10.1016/j.scienta.2017.03.016. DOI
Chookhampaeng S. The effect of salt stress on growth, chlorophyll content proline content and antioxidative enzymes of pepper (Capsicum Annuum L.) seedling. Eur. J. Sci. Res.2011,49, 103–109.
Gammoudi N.; Yahia L.B.; Lachiheb B.; Ferchichi A. Salt response in pepper (Capsicum annuum L.): components of photosynthesis inhibition, proline accumulation and K+/Na+ selectivity. 2016.
Butt M.; Ayyub C.M.; Amjad M. Proline application enhances growth of chili by improving physiological and biochemical attributes under salt stress. Pak. J. Agric. Sci.2016,53, 43–49.
Wolf B.A. Comparative system of leaf analysis and its use for diagnosing nutrient status. Commun. Soil Sci. Plant Anal.1990,13, 1053–105.
Sairam R.K.; Rao K.V.; Srivastava G.C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci.2002,163, 1037–1046.
Zekri M. Effects of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings. Sci. Hort. 1991,47, 305–315.
Heath R.L.; Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophy.1968,125, 189–198. doi: 10.1016/0003-9861(68)90654-1 PubMed DOI
Bates L.S.; Waldren R.P.; Teare E.D. Rapid determination of free proline for water stress studies. Plant Soil 1973,39, 205–208.
Giannopolitis C.N.; Ries S.K. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol.1977,59, 309–314. doi: 10.1104/pp.59.2.309 PubMed DOI PMC
Chance M.; Maehly A.C. Assay of catalases and peroxidases. Methods of Enzymol.1955,2, 764–817. PubMed
Rehman S.; Harris P.J.C.; Ashraf M. Stress environments and their impact on crop production. In: Abiotic Stresses: Plant Resistance through Breeding and Molecular Approaches. Ashraf M. and Harris P.J.C. (Eds.) Haworth Press, New York, 2005, pp. 3–18.
Sharma C.; Singh N.; Pal K. The effect of salt stress on biochemicals of chili at seedling level. Int. J. Pharma Prof. Res.2012,3, 665–670.
Abbas S.; Latif H.H.; Elsherbiny E.A. Effect of 24-epibrassinolide on the physiological and genetic changes on two varieties of pepper under salt stress conditions. Pak. J. Bot. 45, 1273–1284.
Afzal M.; Ahmad A.; Alderfasi A.A.1; Ghoneim A.; Saqib M Physiological tolerance and cation accumulation of different genotypes of Capsicum annum under varying salinity stress. Int. Acad. Ecol. Environ. Sci.2014,4, 39–49.
Azuma R.; Ito N.; Nakayama N.; Suwa R.; Nguyen N.T.; Larrinaga-Mayoral J.; et al.. Fruits are more sensitive to salinity than leaves and stems in pepper plants (Capsicum annuum L.). Sci. Hort. 2010,125, 171–178.
Gorai M.; Ennajeh M.; Khemira H.; Neffati M. Combined effect of NaCl-salinity and hypoxia on growth, photosynthesis, water relations and solute accumulation in Phragmite saustralis plants. Flora.2010,205, 462–470.
De Pascale S.; Maggio A.; Raimondi G.; Martino A. Salt stress response in tomato beyond the salinity tolerance threshold. Environ. Exp. Bot.2007,59, 276–282. 10.1016/j.envexpbot.2006.02.002. DOI
Suarez N. Effects of short-and long-term salinity on leaf water relations, gas exchange and growth in Ipomoea pescaprae. Flora.2010,26, 267–275.
Sucre B.; Suarez N. Effect of salinity and PEG-induced water stress on water status, gas exchange, solute accumulation, and leaf growth in Ipomoea pescaprae. Environ. Exp. Bot. 2011,70, 192–203.
Liang Y.C.; Chen Q.; Liu Q.; Zhang W.; Ding R. Effects of silicon on salinity tolerance of two barley genotypes. J. Plant Physiol.2003,160, 1157–1164. doi: 10.1078/0176-1617-01065 PubMed DOI
Ruiz J.M.; Blasco B.; Rivero R.M.; Romero L. Nicotine-free and salt-tolerant tobacco plants obtained by grafting to salinity-resistant rootstocks of tomato. Plant Physiol.2005,124, 465–475.
Xiong L.; Zhu J.K. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ.2002,25, 131–139. doi: 10.1046/j.1365-3040.2002.00782.x PubMed DOI
Larcher W. Physiological Plant Ecology. (4th Ed.) Springer-Verlag; Berlin Heidelberg. 2003.
Turkan I.; Demiral T. Recent developments in understanding salinity tolerance. Environ. Exp. Bot.2009,67, 2–9.
Ashram M.A,; Ashraf M.; Shahbaz M. Growth stage-based modulation in antioxidant defense system and proline accumulation in two hexaploid wheat (Triticum aestivum L.) cultivars differing in salinity tolerance. Flora.2007,207, 388–397. doi: 10.1157/13108756 PubMed DOI
Miranda G.; Fischer G.; Mewis I.; Rohn S.; Ulrichs C. Salinity effects on proline accumulation and total antioxidant activity in leaves of the cape gooseberry (Physalis peruviana L.). J. App. Bot. Food Quality.2014,87, 67–73.
Genard H.; Saos J.L.; Hillard J.; Tremolieres A.; Boucaud J. Effect of salinity on lipid composition, glycinebetaine content and photosynthetic activity in chloroplasts of Suaeda maritima. Plant Physiol. Biochem.1991,29, 421–427.
Hajlaoui H.; El-Ayeb N.; Garrec J.P.; Denden M.; Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Indus. Crops Prod.2010, 31, 122–130.
Hassine A.B.; Lutts S. Differential responses of saltbush Atriplex halimus L. exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene. J. Plant Physiol.2010,167, 1448–1456. doi: 10.1016/j.jplph.2010.05.017 PubMed DOI
Ali Q.; Ashraf M.; Athar H. Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pak. J. Bot.2007,39, 1133–1144.
Flexas J.; Diaz-Espejo A.; Galmes J.; Kaldenhoff R.; Medrano H.; Ribas-Carbo M. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ.2007,30, 1284–1298. doi: 10.1111/j.1365-3040.2007.01700.x PubMed DOI
Lawlor D.W.; Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficit in higher plants. Plant Cell Environ.2002,25, 255–294. PubMed
Souza R.P.; Machado E.C.; Silva J.A.B.; Lagôa A.M.M.A.; Silveira J.A.G. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ. Exp. Bot.2004,51, 45–56.
Misra A.N.; Biswal A.K.; Misra M. Physiological, biochemical and molecular aspects of water stress responses in plants and the biotechnological applications. Proc. Nat. Acad. Sci.2002,72, 115–134.
Munns R. Comparative physiology of salt and water stress. Plant Cell Environ.2002,25, 239–250. doi: 10.1046/j.0016-8025.2001.00808.x PubMed DOI
Neocleous D.; Vasilakakis M. Effect of NaCl stress on red raspberry (Rubus idoeus L. Autumn Bliss). Sci. Hort. 2007,112, 282–289.
Ashraf M. Relationships between growth and gas exchange characteristics in some salt-tolerant amphidiploid Brassica species in relation to their diploid parents. Environ. Exp. Bot.2001,45, 155–163. doi: 10.1016/s0098-8472(00)00090-3 PubMed DOI
Heidari M. Nucleic acid metabolism, proline concentration and antioxidants enzyme activity in canola (Brassica nupus L.) under salinity stress. Agric. Sci. China.2010,9, 504–511.
Sergio L.; De-Paola A.; Cantore V.; Pieralice M.; Cascareno N.A.; Bianco V.V.; et al.. Effect of salt stress on growth parameters, enzymatic antioxidant system, and lipid peroxidation in wild chicory (Cichorium intybus). Acta. Physiol. Plant.2012, 34, 2349–2358.