Mass of Abrikosov vortex in high-temperature superconductor YBa[Formula: see text]Cu[Formula: see text]O[Formula: see text]
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-11089S
Grantová Agentura Ceské Republiky
21-11089S
Grantová Agentura Ceské Republiky
21-11089S
Grantová Agentura Ceské Republiky
21-11089S
Grantová Agentura Ceské Republiky
20-00918S
Grantová Agentura Ceské Republiky
21-11089S
Grantová Agentura Ceské Republiky
PubMed
34741065
PubMed Central
PMC8571276
DOI
10.1038/s41598-021-00846-x
PII: 846
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
For more than four decades, mass of Abrikosov vortices defied experimental observations. We demonstrate a method of its detection in high-temperature superconductors. Similarly to electrons, fluxons circulate in the direction given by the magnetic field, causing circular dichroism. We report the magneto-transmittance of a nearly optimally doped thin YBa[Formula: see text]Cu[Formula: see text]O[Formula: see text] film, measured using circularly polarized submillimeter waves. The circular dichroism emerges in the superconducting state and increases with dropping temperature. Our results confirm the dominant role of quasiparticle states in the vortex core and yield the diagonal fluxon mass of [Formula: see text] electron masses per centimeter at 45 K and zero-frequency limit, and even larger off-diagonal mass of [Formula: see text]/cm.
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 121 16 Prague 2 Czech Republic
Institute of Physics Czech Academy of Sciences Na Slovance 2 182 21 Prague 8 Czech Republic
Zobrazit více v PubMed
Anders S, et al. European roadmap on superconductive electronics—Status and perspectives. Physica C. 2010;470:2079. doi: 10.1016/j.physc.2010.07.005. DOI
King AD, et al. Observation of topological phenomena in a programmable lattice of 1800 qubits. Nature. 2018;560:456. doi: 10.1038/s41586-018-0410-x. PubMed DOI
Golod T, Iovan A, Krasnov V. Single Abrikosov vortices as quantized information bits. Nat. Commun. 2015;6:8628. doi: 10.1038/ncomms9628. PubMed DOI PMC
Vlasko-Vlasov VK, Colauto F, Benseman T, Rosenmann D, Kwok W-K. Triode for magnetic flux quanta. Sci. Rep. 2016;6:36847. doi: 10.1038/srep36847. PubMed DOI PMC
Suhl H. Inertial mass of a moving fluxoid. Phys. Rev. Lett. 1965;14:226. doi: 10.1103/PhysRevLett.14.226. DOI
Coffey MW, Hao Z. Dipolar electric field induced by a vortex moving in an anisotropic superconductor. Phys. Rev. B. 1991;44:5230. doi: 10.1103/PhysRevB.44.5230. PubMed DOI
Han JH, Kim JS, Kim MJ, Ao P. Effective vortex mass from microscopic theory. Phys. Rev. B. 2005;71:125108. doi: 10.1103/PhysRevB.71.125108. DOI
Sonin EB. Transverse force on a vortex and vortex mass: Effects of free bulk and vortex-core bound quasiparticles. Phys. Rev. B. 2013;87:134515. doi: 10.1103/PhysRevB.87.134515. DOI
Šimánek E. Inertial mass of a fluxon in a deformable superconductor. Phys. Lett. A. 1991;154:309. doi: 10.1016/0375-9601(91)90826-T. DOI
Coffey MW. Deformable superconductor model for the fluxon mass. Phys. Rev. B. 1994;49:9774. doi: 10.1103/PhysRevB.49.9774. PubMed DOI
Toikka LA, Brand J. Asymptotically solvable model for a solitonic vortex in a compressible superfluid. New J. Phys. 2017;19:023029. doi: 10.1088/1367-2630/aa5668. DOI
Simula T. Vortex mass in a superfluid. Phys. Rev. A. 2018;97:023609. doi: 10.1103/PhysRevA.97.023609. DOI
Popov VN. Quantum vortexes and phase-transition in Bose systems. Zh. Eksp. Teor. Fiz. 1973;64:672.
Popov VN. Quantum vortexes and phase-transition in Bose systems. Sov. Phys. JETP. 1973;37:341.
Duan JM. Mass of a vortex line in superfluid PubMed DOI
Baym G, Chandler E. The hydrodynamics of rotating superfluids. I. Zero-temperature, nondissipative theory. J. Low Temp. Phys. 1983;50:57. doi: 10.1007/BF00681839. DOI
Fil VD, et al. Mass of an Abrikosov vortex. Low Temp. Phys. 2007;33:1019. doi: 10.1063/1.2747080. DOI
Golubchik D, Polturak E, Koren G. Mass of a vortex in a superconducting film measured via magneto-optical imaging plus ultrafast heating and cooling. Phys. Rev. B. 2012;85:060504. doi: 10.1103/PhysRevB.85.060504. DOI
Kopnin NB, Vinokur VM. Dynamic vortex mass in clean Fermi superfluids and superconductors. Phys. Rev. Lett. 1998;81:3952. doi: 10.1103/PhysRevLett.81.3952. DOI
Kopnin, N. B. & Kravtsov, V. E. Conductivity and Hall effect of pure type-II superconductors at low temperatures. Pis’ma Zh. Eksp. Teor. Fiz.23, 631 (1976).
Kopnin NB, Kravtsov VE. Conductivity and Hall effect of pure type-II superconductors at low temperatures. JETP Lett. 1976;23:578.
Tesař R, Šindler M, Koláček J, Skrbek L. Terahertz wire-grid circular polarizer tuned by lock-in detection method. Rev. Sci. Instrum. 2018;89:083114. doi: 10.1063/1.5025427. PubMed DOI
Tesař R, et al. Terahertz transmission of NbN superconductor thin film. Physica C. 2010;470:932. doi: 10.1016/j.physc.2010.02.077. DOI
Liang, R., Bonn, D. A. & Hardy, W. N. Evaluation of CuO
Blumenschein, N. et al. Dielectric and conducting properties of unintentionally and Sn-doped
Sonin, E. B. Dynamics of Quantised Vortices in Superfluids (Cambridge University Press, 2016).
Welp, U., Kwok, W. K., Crabtree, G. W., Vandervoort, K. G. & Liu, J. Z. Magnetic measurements of the upper critical field of YBa PubMed
Šindler, M. et al. Far-infrared electrodynamics of thin superconducting NbN film in magnetic field. Supercond. Sci. Technol.27, 055009 (2014).
Kadlec, F. et al. Electromagnon in the
Parks B, et al. Phase-sensitive measurements of vortex dynamics in the terahertz domain. Phys. Rev. Lett. 1995;74:3265. doi: 10.1103/PhysRevLett.74.3265. PubMed DOI
Višňovský, Š. Optics in Magnetic Multilayers and Nanostructures (CRC Press, 2006).
Supplementary Information. 10.1038/s41598-021-00846-x
Kopnin NB, Vinokur VM. Superconducting vortices in ac fields: Does the Kohn theorem work? Phys. Rev. Lett. 2001;87:017003. doi: 10.1103/PhysRevLett.87.017003. PubMed DOI
Sonin EB. Interaction of ultrasound with vortices in type-II superconductors. Phys. Rev. Lett. 1996;76:2794. doi: 10.1103/PhysRevLett.76.2794. PubMed DOI
Lin P-J, Lipavský P, Matlock P. Inertial Josephson relation for FIR frequencies. Phys. Lett. A. 2012;376:883. doi: 10.1016/j.physleta.2012.01.024. DOI