Development and Characterization of Natural Product Derived Macromolecules Based Interpenetrating Polymer Network for Therapeutic Drug Targeting
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34746564
PubMed Central
PMC8567264
DOI
10.1021/acsomega.1c03363
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Interpenetrating polymer network (IPN)-based bead formulations were exploited by cross-linking different hydrophilic polymers in different combinations and at different ratios. Polyvinyl alcohol, xanthan gum, guar gum, gellan gum, and sodium alginate (Na-alginate) were used in this work as hydrophilic polymers to enhance the solubility of diclofenac sodium and also to target the delivery at preferred locations. IPN beads based on polysaccharides were prepared by the ionic gelation method. Differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy data showed that the IPN microbeads solubilized and encapsulated the drug within the network. We found over 83% encapsulation efficiency of the drug delivery system for the drug, and this efficiency increased with the concentration of the polymer. Ex vivo experiments using the goat intestine revealed that the IPN microbeads were able to adhere to the intestinal epithelium, a mucoadhesive behavior that could be beneficial to the drug pharmacokinetics, while in vitro experiments in phosphate buffer showed that the IPN enabled significant drug release. We believe that these IPN microbeads are an excellent drug delivery system to solubilize drug molecules and ensure adhesion to the intestinal wall, thereby localizing the drug release to enhance bioavailability of poorly soluble drugs.
Department of Physiology Faculty of Medicine Masaryk University Brno 62500 Czech Republic
Dr B C Roy College of Pharmacy and AHS Durgapur 713206 India
IIUCNN Mahatma Gandhi University Kottayam Kerala 686560 India
Zobrazit více v PubMed
Li J.; Mooney D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071.10.1038/natrevmats.2016.71. PubMed DOI PMC
Tibbitt M. W.; Dahlman J. E.; Langer R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 2016, 138, 704–717. 10.1021/jacs.5b09974. PubMed DOI
Lordi N. G.Sustained release dosage forms. In The Theory and Practice of Industrial Pharmacy; Lachman L., Liberman H. A., Kanig I. L., Eds.; Lea and Febiger: Philadelphia, 1986; pp 430–456.
Mumper R. J.; Huffman A. S.; Puolakkainen P. A.; Bouchard L. S.; Gombotz W. R. Calcium-alginate beads for the oral delivery of transforming growth factor-β1 (TGF-β1): stabilization of TGF-β1 by the addition of polyacrylic acid within acid-treated beads. J. Controlled Release 1994, 30, 241–251. 10.1016/0168-3659(94)90030-2. DOI
Shin B. Y.; Cha B. G.; Jeong J. H.; Kim J. Injectable macroporous ferrogel microbeads with a high structural stability for magnetically actuated drug delivery. ACS Appl. Mater. Interfaces 2017, 9, 31372–31380. 10.1021/acsami.7b06444. PubMed DOI
Bannerman D.; Wan W. Multifunctional microbeads for drug delivery in TACE. Expert Opin. Drug Delivery 2016, 13, 1289–1300. 10.1080/17425247.2016.1192122. PubMed DOI
Kulkarni A. R.; Soppimath K. S.; Aminabhavi T. M.; Rudzinski W. E. In-vitro release kinetics of cefadroxil-loaded sodium alginate interpenetrating network beads. Eur. J. Pharm. Biopharm. 2001, 51, 127–133. 10.1016/s0939-6411(00)00150-8. PubMed DOI
Roy P.; Shahiwala A. Multiparticulate formulation approach to pulsatile drug delivery: current perspectives. J. Controlled Release 2009, 134, 74–80. 10.1016/j.jconrel.2008.11.011. PubMed DOI
Sood A.; Panchagnula R. Design of controlled release delivery systems using a modified pharmacokinetic approach: a case study for drugs having a short elimination half-life and a narrow therapeutic index. Int. J. Pharm. 2003, 261, 27–41. 10.1016/s0378-5173(03)00267-9. PubMed DOI
Asghar L. F. A.; Chandran S. Multiparticulate Formulation approach to colon specific drug delivery current perspectives. J. Pharm. Pharm. Sci. 2006, 9, 327–338. PubMed
Banerjee S.; Siddiqui L.; Bhattacharya S. S.; Kaity S.; Ghosh A.; Chattopadhyay P.; Pandey A.; Singh L. Interpenetrating polymer network (IPN) hydrogel microspheres for oral controlled release application. Int. J. Biol. Macromol. 2012, 50, 198–206. 10.1016/j.ijbiomac.2011.10.020. PubMed DOI
Butler J.; Cumming I.; Brown J.; Wilding I.; Devane J. G. A novel multiunit controlled-release system. Pharm. Technol. 1998, 22, 122–138.
Yin Z.-C.; Wang Y.-L.; Wang K. A pH-responsive composite hydrogel beads based on agar and alginate for oral drug delivery. J. Drug Delivery Sci. Technol. 2018, 43, 12–18. 10.1016/j.jddst.2017.09.009. DOI
Yang W.; Fortunati E.; Bertoglio F.; Owczarek J. S.; Bruni G.; Kozanecki M.; Kenny J. M.; Torre L.; Visai L.; Puglia D. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydr. Polym. 2018, 181, 275–284. 10.1016/j.carbpol.2017.10.084. PubMed DOI
Park J.-S.; Park J.-W.; Ruckenstein E. A dynamic mechanical and thermal analysis of unplasticized and plasticized poly (vinyl alcohol)/methylcellulose blends. J. Appl. Polym. Sci. 2001, 80, 1825–1834. 10.1002/app.1278. DOI
Traore Y. L.; Fumakia M.; Gu J.; Ho E. A. Dynamic mechanical behaviour of nanoparticle loaded biodegradable PVA films for vaginal drug delivery. J. Biomater. Appl. 2018, 32, 1119–1126. 10.1177/0885328217739451. PubMed DOI
Mendes A. C.; Strohmenger T.; Goycoolea F.; Chronakis I. S. Electrostatic self-assembly of polysaccharides into nanofibers. Colloids Surf., A 2017, 531, 182–188. 10.1016/j.colsurfa.2017.07.044. DOI
Shekarforoush E.; Ajalloueian F.; Zeng G.; Mendes A. C.; Chronakis I. S. Electrospun xanthan gum-chitosan nanofibers as delivery carrier of hydrophobic bioactives. Mater. Lett. 2018, 228, 322–326. 10.1016/j.matlet.2018.06.033. DOI
Soman A.; Mathew F.; Chacko A. J.; Alias M.; Vinoda Poosan G. Interpenetrating polymer network (Ipn) – hydrogels. Pharma Innovation 2014, 3, 59–66.
Lohani A.; Singh G.; Bhattacharya S. S.; Verma A. Interpenetrating polymer networks as innovative drug delivery systems. J. Drug Delivery 2014, 2014, 1–11. 10.1155/2014/583612. PubMed DOI PMC
Bhattacharya S. S.; Shukla S.; Banerjee S.; Chowdhury P.; Chakraborty P.; Ghosh A. Tailored IPN hydrogel bead of sodium carboxymethyl cellulose and sodium carboxymethyl xanthan gum for controlled delivery of diclofenac sodium. Polym.-Plast. Technol. Eng. 2013, 52, 795–805. 10.1080/03602559.2013.763361. DOI
Reddy K. M.; Babu V. R.; Sairam M.; et al. Development of chitosan-guar gum semi-interpenetrating polymer network microspheres for controlled release of cefadroxil. Des. Monomers Polym. 2006, 9, 491–501. 10.1163/156855506778538047. DOI
Vashisth P.; Singh H.; Pruthi P. A.; Pruthi V.. Gellan as novel pharmaceutical excipient. Handbook of Polymers for Pharmaceutical Technologies: Structure and Chemistry; John Wiley & Sons, Inc., 2015; Vol. 1, pp 1–21.
Kim C.-K.; Lee E.-J. The controlled release of blue dextran from alginate beads. Int. J. Pharm. 1992, 79, 11–19. 10.1016/0378-5173(92)90088-j. DOI
Kulkarni A. R.; Soppimath K. S.; Aminabhavi T. M.; Dave A. M. Polymeric sodium alginate interpenetrating network beads for the controlled release of chlorpyrifos. J. Appl. Polym. Sci. 2002, 85, 911–918. 10.1002/app.10364. DOI
Garoushi S.; Vallittu P. K.; Watts D. C.; Lassila L. V. J. Polymerization shrinkage of experimental short glass fiber-reinforced composite with semi-inter penetrating polymer network matrix. Dent. Mater. 2008, 24, 211–215. 10.1016/j.dental.2007.04.001. PubMed DOI
Pongjanyakul T.; Puttipipatkhachorn S. Xanthan–alginate composite gel beads: molecular interaction and in vitro characterization. Int. J. Pharm. 2007, 331, 61–71. 10.1016/j.ijpharm.2006.09.011. PubMed DOI
Guo T.; Zhang N.; Huang J.; Pei Y.; Wang F.; Tang K. A facile fabrication of core–shell sodium alginate/gelatin beads for drug delivery systems. Polym. Bull. 2019, 76, 87–102. 10.1007/s00289-018-2377-z. DOI
Yandrapu S.; Kompella U. B. Development of sustained-release microspheres for the delivery of SAR 1118, an LFA-1 antagonist intended for the treatment of vascular complications of the eye. J. Ocul. Pharmacol. Ther. 2013, 29, 236–248. 10.1089/jop.2012.0210. PubMed DOI PMC
Gamboa J. M.; Leong K. W. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv. Drug Delivery Rev. 2013, 65, 800–810. 10.1016/j.addr.2013.01.003. PubMed DOI PMC
Nayak A. K.; Pal D. Development of pH-sensitive tamarind seed polysaccharide–alginate composite beads for controlled diclofenac sodium delivery using response surface methodology. Int. J. Biol. Macromol. 2011, 49, 784–793. 10.1016/j.ijbiomac.2011.07.013. PubMed DOI
Kamoun E. A.; Kenawy E.-R. S.; Tamer T. M.; El-Meligy M. A.; Mohy Eldin M. S. Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation. Arabian J. Chem. 2015, 8, 38–47. 10.1016/j.arabjc.2013.12.003. DOI
Liu C.; Liu H.; Xiong T.; Xu A.; Pan B.; Tang K. Graphene oxide reinforced alginate/PVA double network hydrogels for efficient dye removal. Polymers 2018, 10, 835.10.3390/polym10080835. PubMed DOI PMC
Tudja P.; Khan M. Z. I.; Meštrovic E.; Horvat M.; Golja P. Thermal behaviour of diclofenac sodium: decomposition and melting characteristics. Chem. Pharm. Bull. 2001, 49, 1245–1250. 10.1248/cpb.49.1245. PubMed DOI
Ray S.; Banerjee S.; Maiti S.; Laha B.; Barik S.; Sa B.; Bhattacharyya U. K. Novel interpenetrating network microspheres of xanthan gum-poly(vinyl alcohol) for the delivery of diclofenac sodium to the intestine-in vitro and in vivo evaluation. Drug Delivery 2010, 17, 508–519. 10.3109/10717544.2010.483256. PubMed DOI
Mohapatra R.; Mallick S.; Nanda A.; Sahoo R. N.; Pramanik A.; Bose A.; Das D.; Pattnaik L. Analysis of steady state and non-steady state corneal permeation of diclofenac. RSC Adv. 2016, 6, 31976–31987. 10.1039/c6ra03604j. DOI
Kaity S.; Ghosh A. Facile preparation of acrylamide grafted locust bean gum-poly (vinyl alcohol) interpenetrating polymer network microspheres for controlled oral drug delivery. J. Drug Delivery Sci. Technol. 2016, 33, 1–12. 10.1016/j.jddst.2016.02.005. DOI
Ghosal K.; Rajabalaya R.; Maiti A. K.; Chowdhury B.; Nanda A. Evaluation of physicochemical properties and in-vitro release profile of glipizide-matrix patch. Braz. J. Pharm. Sci. 2010, 46, 213–218. 10.1590/s1984-82502010000200007. DOI
Ghosal K.; Ray S. D. Alginate/hydrophobic HPMC (60M) particulate systems: new matrix for site-specific and controlled drug delivery. Braz. J. Pharm. Sci. 2011, 47, 833–844. 10.1590/s1984-82502011000400021. DOI
Sankalia M. G.; Mashru R. C.; Sankalia J. M.; Sutariya V. B. Papain entrapment in alginate beads for stability improvement and site-specific delivery: physicochemical characterization and factorial optimization using neural network modeling. AAPS PharmSciTech 2005, 6, E209–E222. 10.1208/pt060231. PubMed DOI PMC
Ray R.; Maity S.; Mandal S.; Chatterjee T. K.; Sa B. Studies on the release of ibuprofen from Al3+ ion cross-linked homopolymeric and interpenetrating network hydrogel beads of carboxymethyl xanthan and sodium alginate. Adv. Polym. Technol. 2011, 30, 1–11. 10.1002/adv.20199. DOI
Pescosolido L.; Vermonden T.; Malda J.; et al. In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications. Acta Biomater. 2011, 7, 1627–1633. 10.1016/j.actbio.2010.11.040. PubMed DOI
Lohani A.; Singh G.; Bhattacharya S. S.; Verma A. Interpenetrating polymer networks as innovative drug delivery systems. J. Drug Delivery 2014, 2014, 583612.10.1155/2014/583612. PubMed DOI PMC
Ei-Arini S. K.; Leuenberger H. Modeling of drug release from polymer matrices: effect of drug loading. Int. J. Pharm. 1995, 121, 141–148. 10.1016/0378-5173(94)00418-5. DOI
Costa P.; Lobo J. M. S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. 10.1016/s0928-0987(01)00095-1. PubMed DOI
Ghosal K.; Chandra A.; Rajabalaya R.; Chakraborty S.; Nanda A. Mathematical modeling of drug release profiles for modified hydrophobic HPMC based gels. Pharmazie 2012, 67, 147–155. PubMed
Silva B. M. A.; Borges A. F.; Silva C.; Coelho J. F. J.; Simões S. Mucoadhesive oral films: the potential for unmet needs. Int. J. Pharm. 2015, 494, 537–551. 10.1016/j.ijpharm.2015.08.038. PubMed DOI
Gombotz W.; Wee S. Protein release from alginate matrices. Adv. Drug Delivery Rev. 1998, 31, 267–285. 10.1016/s0169-409x(97)00124-5. PubMed DOI
Gåserød O.; Jolliffe I. G.; Hampson F. C.; Dettmar P. W.; Skjåk-Bræk G. The enhancement of the bioadhesive properties of calcium alginate gel beads by coating with chitosan. Int. J. Pharm. 1998, 175, 237–246. 10.1016/s0378-5173(98)00277-4. DOI
Lanzerstorfer C. Dusts from dry off-gas cleaning: comparison of flowability determined by angle of repose and with shear cells. Granular Matter 2017, 19, 58.10.1007/s10035-017-0745-2. DOI
Keely S.; Rullay A.; Wilson C.; Carmichael A.; Carrington S.; Corfield A.; Haddleton D. M.; Brayden D. J. In vitro and ex vivo intestinal tissue models to measure mucoadhesion of poly(methacrylate) and N-trimethylated chitosan polymer. Pharm. Res. 2005, 22, 38–49. 10.1007/s11095-004-9007-1. PubMed DOI
Giri T. K.; Choudhary C.; Alexander A.; Ajazuddin; Badwaik H.; Tripathy M.; Tripathi D. K. Sustained release of diltiazem hydrochloride from cross-linked biodegradable IPN hydrogel beads of pectin and modified xanthan gum. Indian J. Pharm. Sci. 2013, 75, 619–627. PubMed PMC
Nayak A. K.; Pal D.; Santra K. Development of calcium pectinate-tamarind seed polysaccharide mucoadhesive beads containing metformin HCl. Carbohydr. Polym. 2014, 101, 220–230. 10.1016/j.carbpol.2013.09.024. PubMed DOI
Sahoo S. K.; Sahoo S. K.; Behera A.; Patil S. V.; Panda S. K. Formulation, in vitro drug release study and anticancer activity of 5-fluorouracil loaded gellan gum microbeads. Acta Pol. Pharm. 2013, 70, 123–127. PubMed
Hua S.; Ma H.; Li X.; Yang H.; Wang A. pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. Int. J. Biol. Macromol. 2010, 46, 517–523. 10.1016/j.ijbiomac.2010.03.004. PubMed DOI