Parameters Influencing the Emission of Ultrafine Particles during 3D Printing
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34770184
PubMed Central
PMC8582798
DOI
10.3390/ijerph182111670
PII: ijerph182111670
Knihovny.cz E-resources
- Keywords
- 3D printing, air quality, emissions, fine particles, size distribution, thermoplastics,
- MeSH
- Printing, Three-Dimensional MeSH
- Particulate Matter * analysis MeSH
- Temperature MeSH
- Particle Size MeSH
- Air Pollution, Indoor * analysis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Particulate Matter * MeSH
This paper presents a complex and extensive experimental evaluation of fine particle emissions released by an FDM 3D printer for four of the most common printing materials (ABS, PLA, PET-G, and TPU). These thermoplastic filaments were examined at three printing temperatures within their recommended range. In addition, these measurements were extended using various types of printing nozzles, which influenced the emissions considerably. This research is based on more than a hundred individual measurements for which a standardized printing method was developed. The study presents information about differences between particular printing conditions in terms of the amount of fine particles emitted as well as the particle size distributions during printing periods. This expands existing knowledge about the emission of ultrafine particles during 3D printing, and it can help reduce the emissions of these devices to achieve cleaner and safer 3D printer operations.
See more in PubMed
Tino R., Moore R., Antoline S., Ravi P., Wake N., Ionita C.N., Morris J.M., Decker S.J., Sheikh A., Rybicki F.J., et al. COVID-19 and the role of 3D printing in medicine. 3D Print. Med. 2020;6:1–8. doi: 10.1186/s41205-020-00064-7. PubMed DOI PMC
Gümperlein I., Fischer E., Dietrich-Gümperlein G., Karrasch S., Nowak D., Jörres R.A., Schierl R. Acute health effects of desktop 3D printing (fused deposition modeling) using acrylonitrile butadiene styrene and polylactic acid materials: An experimental exposure study in human volunteers. Indoor Air. 2018;28:611–623. doi: 10.1111/ina.12458. PubMed DOI
Chan F.L., House R., Kudla I., Lipszyc J.C., Rajaram N., Tarlo S.M. Health survey of employees regularly using 3D printers. Occup. Med. 2018;68:211–214. doi: 10.1093/occmed/kqy042. PubMed DOI
Su W.C., Chen Y., Xi J. Estimation of the deposition of ultrafine 3D printing particles in human tracheobronchial airways. J. Aerosol Sci. 2020;149:105605. doi: 10.1016/j.jaerosci.2020.105605. DOI
Farcas M.T., Stefaniak A.B., Knepp A.K., Bowers L., Mandler W.K., Kashon M., Jackson S.R., Stueckle T.A., Sisler J.D., Friend S.A., et al. Acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) filaments three-dimensional (3-D) printer emissions-induced cell toxicity. Toxicol. Lett. 2019;317:1–12. doi: 10.1016/j.toxlet.2019.09.013. PubMed DOI PMC
Stephens B., Azimi P., El Orch Z., Ramos T. Ultrafine particle emissions from desktop 3D printers. Atmos. Environ. 2013;79:334–339. doi: 10.1016/j.atmosenv.2013.06.050. DOI
Byrley P., George B.J., Boyes W.K., Rogers K. Particle emissions from fused deposition modeling 3D printers: Evaluation and meta-analysis. Sci. Total Environ. 2019;655:395–407. doi: 10.1016/j.scitotenv.2018.11.070. PubMed DOI PMC
Yi J., LeBouf R.F., Duling M.G., Nurkiewicz T., Chen B.T., Schwegler-Berry D., Virji M.A., Stefaniak A.B. Emission of particulate matter from a desktop three-dimensional (3D) printer. J. Toxicol. Environ. Health—Part A Curr. 2016;79:453–465. doi: 10.1080/15287394.2016.1166467. PubMed DOI PMC
Stefaniak A.B., Bowers L.N., Knepp A.K., Virji M.A., Birch E.M., Ham J.E., Wells J.R., Qi C., Schwegler-Berry D., Friend S., et al. Three-dimensional printing with nano-enabled filaments releases polymer particles containing carbon nanotubes into air. Indoor Air. 2018;28:840–851. doi: 10.1111/ina.12499. PubMed DOI PMC
Karwasz A., Osinski F. Literature review on emissions from additive manufacturing by fdm method and their impact on human health. Manag. Prod. Eng. Rev. 2020;11:65–73. doi: 10.24425/mper.2020.134933. DOI
Floyd E.L., Wang J., Regens J.L. Fume emissions from a low-cost 3-D printer with various filaments. J. Occup. Environ. Hyg. 2017;14:523–533. doi: 10.1080/15459624.2017.1302587. PubMed DOI
Vance M.E., Pegues V., Van Montfrans S., Leng W., Marr L.C. Aerosol Emissions from Fuse-Deposition Modeling 3D Printers in a Chamber and in Real Indoor Environments. Environ. Sci. Technol. 2017;51:9516–9523. doi: 10.1021/acs.est.7b01546. PubMed DOI
Guo S., Hu M., Peng J., Wu Z., Zamora M.L., Shang D., Du Z., Zheng J., Fang X., Tang R., et al. Remarkable nucleation and growth of ultrafine particles from vehicular exhaust. Proc. Natl. Acad. Sci. USA. 2020;117:3427–3432. doi: 10.1073/pnas.1916366117. PubMed DOI PMC
Kim Y., Yoon C., Ham S., Park J., Kim S., Kwon O., Tsai P.-J. Emissions of Nanoparticles and Gaseous Material from 3D Printer Operation. Environ. Sci. Technol. 2015;49:12044–12053. doi: 10.1021/acs.est.5b02805. PubMed DOI
Azimi P., Zhao D., Pouzet C., Crain N.E., Stephens B. Emissions of Ultrafine Particles and Volatile Organic Compounds from Commercially Available Desktop Three-Dimensional Printers with Multiple Filaments. Environ. Sci. Technol. 2016;50:1260–1268. doi: 10.1021/acs.est.5b04983. PubMed DOI
Sigloch H., Bierkandt F.S., Singh A.V., Gadicherla A.K., Laux P., Luch A. 3d printing–Evaluating particle emissions of a 3d printing pen. J. Vis. Exp. 2020;164:e61829. doi: 10.3791/61829. PubMed DOI
Wojtyła S., Klama P., Baran T. Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. J. Occup. Environ. Hyg. 2017;14:D80–D85. doi: 10.1080/15459624.2017.1285489. PubMed DOI
Chýlek R., Kudela L., Pospíšil J., Šnajdárek L. Fine particle emission during fused deposition modelling and thermogravimetric analysis for various filaments. J. Clean. Prod. 2019;237:117790. doi: 10.1016/j.jclepro.2019.117790. DOI
Sittichompoo S., Kanagalingam S., Thomas-Seale L.E.J., Tsolakis A., Herreros J.M. Characterization of particle emission from thermoplastic additive manufacturing. Atmos. Environ. 2020;239:117765. doi: 10.1016/j.atmosenv.2020.117765. DOI
Deng Y., Cao S.-J., Chen A., Guo Y. The impact of manufacturing parameters on submicron particle emissions from a desktop 3D printer in the perspective of emission reduction. Build. Environ. 2016;104:311–319. doi: 10.1016/j.buildenv.2016.05.021. DOI
Stabile L., Scungio M., Buonanno G., Arpino F., Ficco G. Airborne particle emission of a commercial 3D printer: The effect of filament material and printing temperature. Indoor Air. 2017;27:398–408. doi: 10.1111/ina.12310. PubMed DOI
Alafaghani A., Qattawi A., Alrawi B., Guzman A. Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach. Procedia Manuf. 2017;10:791–803. doi: 10.1016/j.promfg.2017.07.079. DOI