Modification of Poly(lactic acid) by the Plasticization for Application in the Packaging Industry
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34771207
PubMed Central
PMC8587787
DOI
10.3390/polym13213651
PII: polym13213651
Knihovny.cz E-zdroje
- Klíčová slova
- FTIR-ATR, SEC-MALS, biodegradable polymers, plasticization, polylactic acid,
- Publikační typ
- časopisecké články MeSH
Plastic products, especially in the packaging industry, have become the main commodities penetrating virtually every aspect of our lives. Unfortunately, their omnipresence is not neutral to the natural environment. Pollution in the form of microplastics is a global problem. Therefore, green technologies that enter into the circular economy become an important topic. As part of the research work, the modification of poly(lactic acid) has been studied for use in the packaging industry. Due to its intrinsic rigidity, plasticizing substances had to be introduced in PLA in order to improve its plastic deformability. Both high-molecular compounds such as ethoxylated lauryl alcohol, block copolymer of ethylene oxide and propylene oxide, and ethoxylated stearic acid as well as low-molecular compounds such as di-2-ethylhexyl adipate, di-2-ethylhexyl sebacate, and triethyl citrate were used. The samples extruded from plasticized polymers were characterized using differential scanning calorimetry, thermal gravimetric analysis, and mechanical properties including Young's modulus. The melt flow rate (MFR) and molar mass distribution were determined. For all modified samples the glass transition temperature, depending on the plasticizer used, was shifted towards lower values compared to the base polymer. The best result was obtained for di-2-ethylhexyl adipate (ADO) and di-2-ethylhexyl sebacate (SDO). The elongation at break increased significantly for ADO at about 21%. The highest elongation was obtained for SDO (about 35%), although it obtained a higher glass temperature. The degradation of the polymer was not observed for both plasticizers. For these plasticizers (ADO and SDO) it also lowered Young's module by about 26%, and at the infrared spectrum deformation of peaks were observed, which may indicate the interaction of the ester carbonyl group of PLA with plasticizers. Therefore it can be concluded that they are good modifiers. The selected plasticizers that are used in the production of food contact materials, in particular in the production of PVC (polyvinyl chloride) food films, also exhibited great potential to be applied to PLA food films, and exhibit better properties than the citrate, which are indicated in many publications as PLA plasticizers.
Zobrazit více v PubMed
Strungaru S., Jijie R., Nicoara M., Plavan G., Faggio C. Micro- (nano) plastics in freshwater ecosystems: Abundance, toxicological impact and quantification methodology. Trends Anal. Chem. 2019;110:116–128. doi: 10.1016/j.trac.2018.10.025. DOI
Oßmann B.E., Sarau G., Holtmannspötter H., Pischetsrieder M., Christiansen S.H., Dicke W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018;141:307–316. doi: 10.1016/j.watres.2018.05.027. PubMed DOI
Eerkes-Medrano D., Thompson R.C., Aldridge D.C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 2015;75:63–82. doi: 10.1016/j.watres.2015.02.012. PubMed DOI
Alimi O.S., Farner Budarz J., Hernandez L.M., Tufenkji N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 2018;52:1704–1724. doi: 10.1021/acs.est.7b05559. PubMed DOI
Harrison J.P., Hoellein T.J., Sapp M., Tagg A.S., Ju-Nam Y., Ojeda J.J. Microplastic-associated biofilms: A comparison of freshwater and marine environments. In: Wagner M., Lambert S., editors. Freshwater Microplastics. Volume 58. Springer; Cham, Switzerland: 2018. pp. 181–201. The Handbook of Environmental Chemistry. DOI
Communication from The Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions. A New Circular Economy Action Plan; For A Cleaner and More Competitive Europe; Brussels, Belgium. 2020. [(accessed on 11 September 2021)]. Available online: http://ww.w.xploit-eu.com/pdfs/Europe%202020%20Flagship%20Initiative%20INNOVATION.pdf.
Choi B., Yoo S., Park S. Carbon footprint of packaging films made from LDPE, PLA, and PLA/PBAT blends in South Korea. Sustainability. 2018;10:2369. doi: 10.3390/su10072369. DOI
Haider T.P., Völker C., Kramm J., Landfester K., Wurm F.R. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 2019;58:50–62. doi: 10.1002/anie.201805766. PubMed DOI
Papageorgiou G.Z. Thinking green: Sustainable polymers from renewable resources. Polymers. 2018;10:952. doi: 10.3390/polym10090952. PubMed DOI PMC
Ioannidou S.M., Pateraki C., Ladakis D., Papapostolou H., Tsakona M., Vlysidis A., Kookos I.K., Koutinas A. Sustainable production of bio-based chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context. Bioresour. Technol. 2020;307:123093. doi: 10.1016/j.biortech.2020.123093. PubMed DOI
Reddy M.M., Vivekanandhana S., Misra M., Bhatia S.K., Mohanty A.K. Biobased plastics and bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 2013;38:1653–1689. doi: 10.1016/j.progpolymsci.2013.05.006. DOI
Alvarado N., Romero J., Torres A., de Dicastillo C.L., Rojas A., Galotto M.J., Guarda A. Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl alcohol)-cellulose nanocrystals nanofibers: Development an active food packaging material. J. Food Eng. 2018;217:1–10. doi: 10.1016/j.jfoodeng.2017.08.008. DOI
Jafarzadeh S., Jafari S.M. Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials. Crit. Rev. Food Sci. Nutr. 2020:2640–2658. doi: 10.1080/10408398.2020.1783200. PubMed DOI
Prambauer M., Wendeler C., Weitzenböck J., Burgstaller C. Biodegradable geotextiles–An overview of existing and potential materials. Geotext. Geomembr. 2019;47:48–5949. doi: 10.1016/j.geotexmem.2018.09.006. DOI
European Bioplastics 11.09.2020. [(accessed on 11 September 2021)]. Available online: www.european-bioplastics.org/market/
Shankar S., Wang L.-F., Rhim J.W. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Mater. Sci. Eng. C. 2018;93:289–298. doi: 10.1016/j.msec.2018.08.002. PubMed DOI
Liu Y.F., Jiang S.Y., Yan W., He M., Qin J., Qin S.H., Yu J. Crystallization morphology regulation on enhancing heat resistance of polylactic acid. Polymers. 2020;12:1563. doi: 10.3390/polym12071563. PubMed DOI PMC
Delgado-Aguilar M., Puig R., Sazdovski I., Fullana-I-Palmer P. Polylactic acid/polycaprolactone blends: On the path to circular economy, substituting single-use commodity plastic products. Materials. 2020;13:2655. doi: 10.3390/ma13112655. PubMed DOI PMC
Vanaei H., Shirinbayan M., Deligant M., Raissi K., Fitoussi J., Khelladi S., Tcharkhtchi A. Influence of process parameters on thermal and mechanical properties of polylactic acid fabricated by fused filament fabrication. Polym. Eng. Sci. 2020;60:8. doi: 10.1002/pen.25419. DOI
Marczak D., Lejcuś K., Misiewicz J. Characteristics of biodegradable textiles used in environmental engineering: A comprehensive review. J. Clean. Prod. 2020;268:20. doi: 10.1016/j.jclepro.2020.122129. DOI
Rocha D.B., de Carvalho J.S., de Oliveira S.A., dos Santos Rosa D. A new approach for flexible PBAT/PLA/CaCO3 films into agriculture. J. Appl. Polym. Sci. 2018;135:46660. doi: 10.1002/app.46660. DOI
Krucińska J., Gutowska A., Ciechańska D., Lichocik M. Biodegradowalne wyroby włókniste. Recykling. 2014;7–8:32–34.
Lunt J., Shafer A.L. Polylactic acid polymers from coin. Applications in the textiles industry. J. Ind. Text. 2000;29:191–205.
[(accessed on 13 September 2020)]. Available online: www.all3dp.com/1/pla-plastic-material-polylactic-acid/
Balla E., Daniilidis V., Karlioti G., Kalamas T., Stefanidou M., Bikiaris N.D., Vlachopoulos A., Koumentakou I., Bikiaris D.N. Poly(lactic Acid): A versatile biobased polymer for the future with multifunctional properties—From monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polymers. 2021;13:1822. doi: 10.3390/polym13111822. PubMed DOI PMC
Kosior E., Crescenzi I. Plastic Waste and Recycling. Academic Press; Burlington, MA, USA: 2020. Solutions to the plastic waste problem on land and in the oceans; pp. 415–446. DOI
[(accessed on 8 October 2021)]. Available online: https://packagingeurope.com/extended-responsibility-part-2-how-far-have-we-come/
Matthews C., Moran F., Amit K., Jaiswal A.K. A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. J. Clean. Prod. 2021;283:125263. doi: 10.1016/j.jclepro.2020.125263. DOI
Benetto E., Jury C., Igos E., Carton J., Hild P., Vergne C., Di Martino J. Using atmospheric plasma to design multilayer film from polylactic acid and thermoplastic starch: A screening life cycle assessment. J. Clean. Prod. 2015;87:953–960. doi: 10.1016/j.jclepro.2014.10.056. DOI
Ingrao C., Tricase C., Cholewa-Wójcik A., Kawecka A., Rana R., Siracusa V. Polylactic acid trays for fresh-food packaging: A Carbon Footprint assessment. Sci. Total Environ. 2015;537:385–398. doi: 10.1016/j.scitotenv.2015.08.023. PubMed DOI
Alaerts L., Augustinus M., Van Acker K. Impact of bio-based plastics on current recycling of plastics. Sustainability. 2018;10:1487. doi: 10.3390/su10051487. DOI
Maqsood M., Langensiepen F., Seide G. Investigation of melt spinnability of plasticized polylactic acid biocomposites-containing intumescent flame retardant. J. Therm. Anal. Calorim. 2020;139:305–318. doi: 10.1007/s10973-019-08405-3. DOI
Jabbar A., Tausif M., Tahir H.R., Basit A., Bhatti M.R.A., Abbas G. Polylactic acid/Lyocell fibre as an eco-friendly alternative to Polyethylene terephthalate/Cotton fibre blended yarns and knitted fabrics. J. Text. Inst. 2019 doi: 10.1080/00405000.2019.1624070. DOI
Ongaro A.E., Di Giuseppe D., Kermanizadeh A., Crespo A.M., Mencattini A., Ghibelli L., Mancini V., Wlodarczyk K.L., Hand D.P., Martinelli E., et al. Polylactic is a sustainable, low absorption, low autofluorescence alternative to other plastics for microfluidic and organ-on-chip applications. Anal. Chem. 2020;92:9. doi: 10.1021/acs.analchem.0c00651. PubMed DOI
Anders D., Nowak L. Assessment of the composting process with animal waste. PAN Crac. 2008;9:35–46. (in Polish)
Żuchowska D., Steller R., Meissner W. Polymer composites susceptible to (bio) degradation. Polimery. 2007;52:524–526. doi: 10.14314/polimery.2007.524. DOI
Elsawy M.A., Kim K.H., Park J.W., Deep A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sustain. Energy Rev. 2017;79:1346–1352. doi: 10.1016/j.rser.2017.05.143. DOI
Karamanlioglu M., Robson G.D. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym. Degrad. Stab. 2013;98:2063–2071. doi: 10.1016/j.polymdegradstab.2013.07.004. DOI
Sülar V., Devrim G. Biodegradation Behaviour of Different Textile Fibres: Visual, Morphological, Structural Properties and Soil Analyses. Fibres Text. East. Europe. 2019;27:100–111. doi: 10.5604/01.3001.0012.7751. DOI
Kalita N.K., Nagar M.K., Mudenur C., Kalamdhad A., Katiyar V. Biodegradation of modified Poly(lactic acid) based biocomposite films under thermophilic composting conditions. Polym. Test. 2019;76:522–536. doi: 10.1016/j.polymertesting.2019.02.021. DOI
Sedničková M., Pekařová S., Kucharczyk P., Bočkaj J., Janigováp I., Kleinová A., Jochec-Mošková D., Omaníková L., Perďochová D., Koutný M., et al. Changes of physical properties of PLA-based blends during early stage of biodegradation in compost. Int. J. Biol. Macromol. 2018;113:434–442. doi: 10.1016/j.ijbiomac.2018.02.078. PubMed DOI
Houwink R. Procceedings of the XI Congress of Pure and Applied Chemistry, London, UK, 17–24 July 1947. Hepworth; London, UK: 1947. pp. 575–583. Conference Publication.
Tanrattanakul V., Bunkaew P. Effect of different plasticizers on the properties of bio-based thermoplastic elastomer containing poly(lactic acid) and natural rubber. Express Polym. Lett. 2014;8:387–396. doi: 10.3144/expresspolymlett.2014.43. DOI
Labrecque L.V., Kumar R.A., Dave V., Gross R.A., McCarthy S.P. Citrate Esters as Plasticizers for Poly(lactic acid) J. Appl. Polym. Sci. 1997;66:1507–1513. doi: 10.1002/(SICI)1097-4628(19971121)66:8<1507::AID-APP11>3.0.CO;2-0. DOI
Marcilla A., Beltrán M. Mechanisms of Plasticizers Action. Handb. Plast. 2012:119–133. doi: 10.1016/B978-1-895198-50-8.50007-2. DOI
Pearce E.M. Kirk-Othmer Encyclopedia of Chemical Technology. 3rd ed. John Wiley & Sons; New York, NY, USA, 1978: 1978. DOI
Cadogan D.F., Howick C.J. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim, Germany: 2012. Plasticizers. DOI
Mustapa I.R., Shanks R.A., Kong I. Poly(lactic acid)-hemp-nanosilica hybrid composites: Thermomechanical, thermal behavior and morphological properties. Int. J. Adv. Sci. Eng. Technol. 2013;3:192–199.
Aslan S., Calandrelli L., Laurienzo P., Malinconico M., Migliaresi C. Poly(D,L-lactic acid)/poly(ε-caprolactone) blend membranes: Preparation and morphological characterization. J. Mater. Sci. 2000;35:1615–1622. doi: 10.1023/A:1004787326273. DOI
Silverstein R.M., Webster F.X., Kieml D.J. Spectrometric Identification of Organic Compounds. 7th ed. John Wiley&Sons; New York, NY, USA: 2005.
Miros-Kudra P., Gzyra-Jagieła K., Kudra M. Physicochemical assessment of the biodegradability of agricultural nonwovens made of PLA. Fibres Text. East. Eur. 2021;1:26–34. doi: 10.5604/01.3001.0014.2398. DOI
Cohn D., Younes H.J. Biodegradable PEO/PLA block copolymers. J. Biomed. Mater. Res. 1988;22:993. doi: 10.1002/jbm.820221104. PubMed DOI
Lee J.K., Lee K.H., Jin B.S. Effect of constrained annealing on the microstructures of extrusion cast polylactic acid films. Eur. Polym. J. 2001;37:907. doi: 10.1016/S0014-3057(00)00213-5. DOI
Zhang J., Tsuji H., Noda I., Ozaki Y. Structural changes and crystallization dynamics of Poly(L-lactide) during the cold-crystallization process investigated by infrared and two-dimensional infrared correlation spectroscopy. Macromolecules. 2004;37:6433–6439. doi: 10.1021/ma049288t. DOI