Catalytic Oxidation of Ammonia over Cerium-Modified Copper Aluminium Zinc Mixed Oxides
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008419
Ministry of Education Youth and Sports
LM2018098
Ministry of Education Youth and Sports
PubMed
34772134
PubMed Central
PMC8585330
DOI
10.3390/ma14216581
PII: ma14216581
Knihovny.cz E-zdroje
- Klíčová slova
- Cu-Ce, Cu-Zn, ammonia oxidation, copper, copper-cerium catalysts, mixed metal oxides, zinc,
- Publikační typ
- časopisecké články MeSH
Copper-containing mixed metal oxides are one of the most promising catalysts of selective catalytic oxidation of ammonia. These materials are characterized by high catalytic efficiency; however, process selectivity to dinitrogen is still an open challenge. The set of Cu-Zn-Al-O and Ce/Cu-Zn-Al-O mixed metal oxides were tested as catalysts of selective catalytic oxidation of ammonia. At the low-temperature range, from 250 °C up to 350 °C, materials show high catalytic activity and relatively high selectivity to dinitrogen. Samples with the highest Cu loading 12 and 15 mol.% of total cation content were found to be the most active materials. Additional sample modification by wet impregnation of cerium (8 wt.%) improves catalytic efficiency, especially N2 selectivity. The comparison of catalytic tests with results of physicochemical characterization allows connecting the catalysts efficiency with the form and distribution of CuO on the samples' surface. The bulk-like well-developed phases were associated with sample activity, while the dispersed CuO phases with dinitrogen selectivity. Material characterization included phase composition analysis (X-ray powder diffraction, UV-Vis diffuse reflectance spectroscopy), determination of textural properties (low-temperature N2 sorption, scanning electron microscopy) and sample reducibility analysis (H2 temperature-programmed reduction).
Zobrazit více v PubMed
Dammers E., McLinden C.A., Griffin D., Shephard M.W., Van Der Graaf S., Lutsch E., Schaap M., Gainairu-Matz Y., Fioletov V., Van Damme M., et al. NH3 emmisions from large point sources from CrIS and IASI satellite observations. Atmos. Chem. Phys. Discuss. 2019;19:12261–12293. doi: 10.5194/acp-19-12261-2019. DOI
Gómez-García M.A., Pitchon V., Kiennemann A. Pollution by nitrogen oxides: An approach to NOx abatement by using sorbing catalytic materials. Environ. Int. 2005;31:445–467. doi: 10.1016/j.envint.2004.09.006. PubMed DOI
Huang R., Wu H., Yang L. Study on the ammonia emission characteristics in an ammonia-based WFGD system. Chem. Eng. J. 2020;379:122257. doi: 10.1016/j.cej.2019.122257. DOI
Insausti M., Timmis R., Kinnersley R., Rufino M.C. Advances in sensing ammonia from agricultural sources. Sci. Total Environ. 2020;706:135124. doi: 10.1016/j.scitotenv.2019.135124. PubMed DOI
Jabłońska M., Palkovits R. Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour-Recent trends and open challenges. Appl. Catal. B Environ. 2016;181:332–351. doi: 10.1016/j.apcatb.2015.07.017. DOI
Basąg S., Piwowarska Z., Kowalczyk A., Węgrzyn A., Baran R., Gil B., Michalik M., Chmielarz L. Cu-Mg-Al hydrotalcite-like materials as precursors of effective catalysts for selective oxidation of ammonia to dinitrogen—The influence of Mg/Al ratio and calcination temperature. Appl. Clay Sci. 2016;129:122–130. doi: 10.1016/j.clay.2016.05.019. DOI
Gao F., Liu Y., Sani Z., Tang X., Yi H., Zhao S., Yu Q., Zhou Y. Advances in selective catalytic oxidation of ammonia (NH3-SCO) to dinitrogen in excess oxygen: A review on typical catalysts, catalytic performances and reaction mechanisms. J. Environ. Chem. Eng. 2021;9:104575. doi: 10.1016/j.jece.2020.104575. DOI
Górecka S., Pacultová K., Górecki K., Smýkalová A., Pamin K., Obalová L. Cu-Mg-Fe-O-(Ce) complex oxides as catalysts of selective catalytic oxidation of ammonia to dinitrogen (NH3-SCO) Catalysts. 2020;10:153. doi: 10.3390/catal10020153. DOI
Chmielarz L., Jabłońska M. Advances in selective catalytic oxidation of ammonia to dinitrogen: A review. RSC Adv. 2015;5:43408–43431. doi: 10.1039/C5RA03218K. DOI
Jabłońska M. Selective catalytic oxidation of ammonia into nitrogen and water vapour over transition metals modified Al2O3, TiO2 and ZrO2. Chem. Pap. 2015;69:1141–1155. doi: 10.1515/chempap-2015-0120. DOI
Jabłońska M., Nocuń M., Gołąbek K., Palkovits R. Effect of preparation procedures on catalytic activity and selectivity of copper-based mixed oxides in selective catalytic oxidation of ammonia into nitrogen and water vapour. Appl. Surf. Sci. 2017;423:498–508. doi: 10.1016/j.apsusc.2017.06.144. DOI
Wang H., Zhang Q., Zhang T., Wang J., Wei G., Liu M., Ning P. Structural tuning and NH3-SCO performance optimization of CuO-Fe2O3 catalysts by impact of thermal treatment. Appl. Surf. Sci. 2019;485:81–91. doi: 10.1016/j.apsusc.2019.04.196. DOI
Zhao H., Qu Z., Sun H. Rational design of spinel CoMn2O4 with Co-enriched surface as high-activity catalysts for NH3-SCO reaction. Appl. Surf. Sci. 2020;529:147044. doi: 10.1016/j.apsusc.2020.147044. DOI
Pérez-Ramírez J., Kondratenko E.V. Mechanism of ammonia oxidation over oxides studied by temporal analysis of products. J. Catal. 2007;250:240–246. doi: 10.1016/j.jcat.2007.06.014. DOI
Jabłońska M. TPR study and catalytic performance of noble metals modified Al2O3, TiO2 and ZrO2 for low-temperature NH3-SCO. Catal. Commun. 2015;70:66–71. doi: 10.1016/j.catcom.2015.07.012. DOI
Wang F., Zhu Y., Li Z., Shan Y., Shan W., Shi X., Yu Y., Zhang C., Li K., Ning P., et al. Promoting effect of acid sites on NH3-SCO activity with water vapor participation for Pt-Fe/ZSM-5 catalyst. Catal. Today. 2020;376:311–317. doi: 10.1016/j.cattod.2020.06.039. DOI
Lin M., An B., Takei T., Shishido T., Ishida T., Haruta M., Murayama T. Features of Nb2O5 as a metal oxide support of Pt and Pd catalysts for selective catalytic oxidation of NH3 with high N2 selectivity. J. Catal. 2020;389:366–374. doi: 10.1016/j.jcat.2020.05.040. DOI
Shin J.H., Kim G.J., Hong S.C. Reaction properties of ruthenium over Ru/TiO2 for selective catalytic oxidation of ammonia to nitrogen. Appl. Surf. Sci. 2020;506:144906. doi: 10.1016/j.apsusc.2019.144906. DOI
Liang C., Li X., Qu Z., Tade M., Liu S. The role of copper species on Cu/γ-Al2O3 catalysts for NH3-SCO reaction. Appl. Surf. Sci. 2012;258:3738–3743. doi: 10.1016/j.apsusc.2011.12.017. DOI
Chang S., Harle G., Ma J., Yi J. The effect of textural properties of CeO2-SiO2 mixed oxides on NH3-SCO activity of Pt/CeO2-SiO2 catalyst. Appl. Catal. A Gen. 2020;604:117775. doi: 10.1016/j.apcata.2020.117775. DOI
Lee S.M., Lee H.H., Hong S.C. Influence of calcination temperature on Ce/TiO2 catalysis of selective catalytic oxidation of NH3 to N2. Appl. Catal. A Gen. 2014;470:189–198. doi: 10.1016/j.apcata.2013.10.057. DOI
Guo J., Yang W., Zhang Y., Gan L., Fan C., Chen J., Peng Y., Li J. A multiple-active-site Cu/SSZ-13 for NH3-SCO: Influence of Si/Al ratio on the catalytic performance. Catal. Commun. 2020;135:105751. doi: 10.1016/j.catcom.2019.105751. DOI
Rutkowska M., Pacia I., Basąg S., Kowalczyk A., Piwowarska Z., Duda M., Tarach K.A., Góra-Marek K., Michalik M., Díaz U., et al. Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3-SCO processes. Microporous Mesoporous Mater. 2017;246:193–206. doi: 10.1016/j.micromeso.2017.03.017. DOI
Guo J., Peng Y., Zhang Y., Yang W., Gan L., Li K., Chen J., Li J. Comparison of NH3-SCO performance over CuOx/H-SSZ-13 and CuOx/H-SAPO-34 catalysts. Appl. Catal. A Gen. 2019;585:117119. doi: 10.1016/j.apcata.2019.117119. DOI
Kowalczyk A., Święs A., Gil B., Rutkowska M., Piwowarska Z., Borcuch A., Michalik M., Chmielarz L. Effective catalysts for the low-temperature NH3-SCR process based on MCM-41 modified with copper by template ion-exchange (TIE) method. Appl. Catal. B Environ. 2018;237:927–937. doi: 10.1016/j.apcatb.2018.06.052. DOI
Chen C., Cao Y., Liu S., Chen J., Jia W. The catalytic properties of Cu modified attapulgite in NH3–SCO and NH3–SCR reactions. Appl. Surf. Sci. 2019;480:537–547. doi: 10.1016/j.apsusc.2019.03.024. DOI
Curtin T., Lenihan S. Copper exchanged beta zeolites for the catalytic oxidation of ammonia. Chem. Commun. 2003;3:1280–1281. doi: 10.1039/b301894f. PubMed DOI
Curtin T., O’Regan F., Deconinck C., Knüttle N., Hodnett B.K. The catalytic oxidation of ammonia: Influence of water and sulfur on selectivity to nitrogen over promoted copper oxide/alumina catalysts. Catal. Today. 2000;55:189–195. doi: 10.1016/S0920-5861(99)00238-2. DOI
Górecka S., Pacultová K., Smýkalová A., Fridrichová D., Górecki K., Rokicińska A., Kuśtrowski P., Žebrák R., Obalová L. Role of the Cu content and Ce activating effect on catalytic performance of Cu-Mg-Al and Ce/Cu-Mg-Al oxides in ammonia selective catalytic oxidation. Appl. Surf. Sci. 2021;573:151540. doi: 10.1016/j.apsusc.2021.151540. DOI
Gang L., Anderson B.G., Van Grondelle J., Van Santen R.A. NH3 oxidation to nitrogen and water at low temperatures using supported transition metal catalysts. Catal. Today. 2000;61:179–185. doi: 10.1016/S0920-5861(00)00375-8. DOI
Gang L., Van Grondelle J., Anderson B.G., Van Santen R.A. Selective low temperature NH3 oxidation to N2 on copper-based catalysts. J. Catal. 1999;186:100–109. doi: 10.1006/jcat.1999.2524. DOI
Lippits M.J., Gluhoi A.C., Nieuwenhuys B.E. A comparative study of the selective oxidation of NH3 to N2 over gold, silver and copper catalysts and the effect of addition of Li2O and CeOx. Catal. Today. 2008;137:446–452. doi: 10.1016/j.cattod.2007.11.021. DOI
He S., Zhang C., Yang M., Zhang Y., Xu W., Cao N., He H. Selective catalytic oxidation of ammonia from MAP decomposition. Sep. Purif. Technol. 2007;58:173–178. doi: 10.1016/j.seppur.2007.07.015. DOI
Mayer R.W., Hävecker M., Knop-Gericke A., Schlügl R. Investigation of ammonia oxidation over copper with in situ NEXAFS in the soft X-ray range: Influence of pressure on the catalyst performance. Catal. Lett. 2001;74:115–119. doi: 10.1023/A:1016640128384. DOI
Chmielarz L., Jabłońska M., Strumiński A., Piwowarska Z., Wegrzyn A., Witkowski S., Michalik M. Selective catalytic oxidation of ammonia to nitrogen over Mg-Al, Cu-Mg-Al and Fe-Mg-Al mixed metal oxides doped with noble metals. Appl. Catal. B Environ. 2013;130–131:152–162. doi: 10.1016/j.apcatb.2012.11.004. DOI
Trombetta M., Ramis G., Busca G., Montanari B., Vaccari A. Ammonia adsorption and oxidation on Cu/Mg/Al mixed oxide catalysts prepared via hydrotalcite-type precursors. Langmuir. 1997;13:4628–4637. doi: 10.1021/la960673o. DOI
Jabłońska M., Palomares A.E., Chmielarz L. NOx storage/reduction catalysts based on Mg/Zn/Al/Fe hydrotalcite-like materials. Chem. Eng. J. 2013;231:273–280. doi: 10.1016/j.cej.2013.07.038. DOI
Zhang Y.S., Li C., Yu C., Tran T., Guo F., Yang Y., Yu J., Xu G. Synthesis, characterization and activity evaluation of Cu-based catalysts derived from layered double hydroxides (LDHs) for DeNOx reaction. Chem. Eng. J. 2017;330:1082–1090. doi: 10.1016/j.cej.2017.08.044. DOI
Wang C., Yang S., Chang H., Peng Y., Li J. Structural effects of iron spinel oxides doped with Mn, Co, Ni and Zn on selective catalytic reduction of NO with NH3. J. Mol. Catal. A Chem. 2013;376:13–21. doi: 10.1016/j.molcata.2013.04.008. DOI
Marchi A.J., Di Cosimo J.I., Apesteguia C.R. Influence of the chemical composition on the preparation of Cu-Co-Zn-Al mixed oxide catalysts with high metal dispersion. New Front. Catal. 1993;75:1771–1774.
Obalová L., Karásková K., Wach A., Kustrowski P., Mamulová-Kutláková K., Michalik S., Jirátová K. Alkali metals as promoters in Co-Mn-Al mixed oxide for N2O decomposition. Appl. Catal. A Gen. 2013;462–463:227–235. doi: 10.1016/j.apcata.2013.05.011. DOI
Basąg S., Kovanda F., Piwowarska Z., Kowalczyk A., Pamin K., Chmielarz L. Hydrotalcite-derived Co-containing mixed metal oxide catalysts for methanol incineration: Role of cobalt content, Mg/Al ratio and calcination temperature. J. Therm. Anal. Calorim. 2017;129:1301–1311. doi: 10.1007/s10973-017-6348-7. DOI
Shannon R.D. Revised effective ionic Radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976;A32:751–767. doi: 10.1107/S0567739476001551. DOI
Da Silva W.J., Da Silva M.R., Takashima K. Preparation and characterization of Zno/CuO semiconductor and photocatalytic activity on the decolorization of direct red 80 azodye. J. Chil. Chem. Soc. 2015;60:2749–2751. doi: 10.4067/S0717-97072015000400022. DOI
Chen K., Zhang T., Chen X., He Y., Liang X. Model construction of micro-pores in shale: A case study of Silurian Longmaxi Formation shale in Dianqianbei area, SW China. Pet. Explor. Dev. 2018;45:412–421. doi: 10.1016/S1876-3804(18)30046-6. DOI
Basąg S., Kocoł K., Piwowarska Z., Rutkowska M., Baran R., Chmielarz L. Activating effect of cerium in hydrotalcite derived Cu–Mg–Al catalysts for selective ammonia oxidation and the selective reduction of NO with ammonia. React. Kinet. Mech. Catal. 2017;121:225–240. doi: 10.1007/s11144-017-1141-y. DOI
Jabłońska M., Chmielarz L., Węgrzyn A., Guzik K., Piwowarska Z., Witkowski S., Walton R.I., Dunne P.W., Kovanda F. Thermal transformations of Cu-Mg (Zn)-Al(Fe) hydrotalcite-like materials into metal oxide systems and their catalytic activity in selective oxidation of ammonia to dinitrogen. J. Therm. Anal. Calorim. 2013;114:731–747. doi: 10.1007/s10973-012-2935-9. DOI
Lee S.M., Hong S.C. Promotional effect of vanadium on the selective catalytic oxidation of NH3 to N2 over Ce/V/TiO2 catalyst. Appl. Catal. B Environ. 2015;163:30–39. doi: 10.1016/j.apcatb.2014.07.043. DOI
Wang Z., Qu Z., Quan X., Li Z., Wang H., Fan R. Selective catalytic oxidation of ammonia to nitrogen over CuO-CeO2 mixed oxides prepared by surfactant-templated method. Appl. Catal. B Environ. 2013;134–135:153–166. doi: 10.1016/j.apcatb.2013.01.029. DOI
Lou J.C., Hung C.M., Yang S.F. Selective Catalytic Oxidation of Ammonia over Copper-Cerium Composite Catalyst. J. Air Waste Manag. Assoc. 2004;54:68–76. doi: 10.1080/10473289.2004.10470881. PubMed DOI
Zhang X., Wang H., Wang Z., Qu Z. Adsorption and surface reaction pathway of NH3 selective catalytic oxidation over different Cu-Ce-Zr catalysts. Appl. Surf. Sci. 2018;447:40–48. doi: 10.1016/j.apsusc.2018.03.220. DOI
Zhang L., He H. Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al2O3. J. Catal. 2009;268:18–25. doi: 10.1016/j.jcat.2009.08.011. DOI
Puigdollers A.R., Schlexer P., Tosoni S., Pacchioni G. Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal. 2017;7:6493–6513. doi: 10.1021/acscatal.7b01913. DOI