Collection of human and environmental data on pesticide use in Europe and Argentina: Field study protocol for the SPRINT project
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34780516
PubMed Central
PMC8592492
DOI
10.1371/journal.pone.0259748
PII: PONE-D-21-32372
Knihovny.cz E-zdroje
- MeSH
- ekosystém MeSH
- lidé MeSH
- pesticidy * MeSH
- zemědělské plodiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Argentina MeSH
- Evropa MeSH
- Názvy látek
- pesticidy * MeSH
Current farm systems rely on the use of Plant Protection Products (PPP) to secure high productivity and control threats to the quality of the crops. However, PPP use may have considerable impacts on human health and the environment. A study protocol is presented aiming to determine the occurrence and levels of PPP residues in plants (crops), animals (livestock), humans and other non-target species (ecosystem representatives) for exposure modelling and impact assessment. To achieve this, we designed a cross-sectional study to compare conventional and organic farm systems across Europe. Environmental and biological samples were/are being/will be collected during the 2021 growing season, at 10 case study sites in Europe covering a range of climate zones and crops. An additional study site in Argentina will inform the impact of PPP use on growing soybean which is an important European protein-source in animal feed. We will study the impact of PPP mixtures using an integrated risk assessment methodology. The fate of PPP in environmental media (soil, water and air) and in the homes of farmers will be monitored. This will be complemented by biomonitoring to estimate PPP uptake by humans and farm animals (cow, goat, sheep and chicken), and by collection of samples from non-target species (earthworms, fish, aquatic and terrestrial macroinvertebrates, bats, and farm cats). We will use data on PPP residues in environmental and biological matrices to estimate exposures by modelling. These exposure estimates together with health and toxicity data will be used to predict the impact of PPP use on environment, plant, animal and human health. The outcome of this study will then be integrated with socio-economic information leading to an overall assessment used to identify transition pathways towards more sustainable plant protection and inform decision makers, practitioners and other stakeholders regarding farming practices and land use policy.
Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
Centre for Development and Environment University of Bern Bern Switzerland
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas CIEMAT Madrid Spain
Cesare Maltoni Cancer Research Center Ramazzini Institute Bologna Italy
Countryside and Community Research Institute University of Gloucestershire Cheltenham United Kingdom
Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
Department of Agroecology Aarhus University Aarhus Denmark
Department of Animal Science Aarhus University Aarhus Denmark
Department of Public Health Aarhus University Aarhus Denmark
Dutch Mammal Society Nijmegen Netherlands
Ecologic Institute Berlin Germany
INSERM U1219 EPICENE Team Bordeaux University Nouvelle Aquitaine France
Institute for Risk Assessment Sciences Utrecht University Utrecht Netherlands
Institute of Agriculture and Tourism Department of Agriculture and Nutrition Poreč Croatia
Institute of Geography University of Bern Bern Switzerland
Instituto Nacional de Tecnología Agropecuaria INTA Buenos Aires Argentina
Land Quality Management LQM Nottingham United Kingdom
National Research Centre for the Working Environment Copenhagen Denmark
Radboud Institute for Health Sciences Radboudumc Nijmegen Netherlands
Research Institute of Organic Agriculture FIBL Frick Switzerland
Soil Physics and Land Management Group Wageningen University and Research Wageningen Netherlands
Universidad Politécnica de Cartagena Cartagena Spain
Wageningen Food Safety Research Wageningen Wageningen University and Research Wageningen Netherlands
Wildlife Ecology and Conservation Group Wageningen University and Research Wageningen Netherlands
Zobrazit více v PubMed
EUROSTAT. Pesticide sales. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=aei_fm_salpest09&lang=en. 2021.
Hofmann F, Kruse-Plaß M, Schlechtriemen U, Wosniok W. “TIEM report stand 29.09.2020. Pestizid-Belastung der Luft. Eine deutschlandweite Studie zur Ermittlung der Belastung der Luft mit Hilfe von technischen Sammlern, Bienenbrot, Filtern aus Be- und Entlüftungsanlagen und Luftgüte-Rindenmonitoring hinsichtlich des Vorkommens von Pestizid-Wirkstoffen, insbesondere Glyphosat.”. 2020.
Zambito Marsala R, Capri E, Russo E, Bisagni M, Colla R, Lucini L, et al.. First evaluation of pesticides occurrence in groundwater of Tidone Valley, an area with intensive viticulture. Sci Total Environ. 2020;736. doi: 10.1016/j.scitotenv.2020.139730 PubMed DOI
Casado J, Brigden K, Santillo D, Johnston P. Screening of pesticides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry. Sci Total Environ. 2019;670:1204–25. doi: 10.1016/j.scitotenv.2019.03.207 PubMed DOI
Geissen V, Silva V, Lwanga EH, Beriot N, Oostindie K, Bin Z, et al.. Cocktails of pesticide residues in conventional and organic farming systems in Europe–Legacy of the past and turning point for the future. Environmental Pollution. 2021;278. doi: 10.1016/j.envpol.2021.116827 PubMed DOI
WFSR. National Monitoring Plan Feed of the Netherlands Food and Consumer Product Safety Authority, data 2019–2020. 2021.
Suciu NA, Ferrari F, Trevisan M. Organic and conventional food: Comparison and future research. Trends in Food Science & Technology. 2019;84:49–51.
PPDB. Pesticide Properties DataBase, University of Hertfordshire. http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm 2019.
EC. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, p. 1–1355. 2008.
EC. Regulation (EC) No 1107/2009 Of The European Parliament And Of The Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Official Journal of the European Union L 309/1. 2009.
Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang M-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics. 2021;9(3). doi: 10.3390/toxics9030042 PubMed DOI PMC
Carvalho FP. Pesticides, environment, and food safety. Food and Energy Security. 2017;6(2):48–60.
Pelosi C, Barot S, Capowiez Y, Hedde M, Vandenbulcke F. Pesticides and earthworms. A review. Agronomy for Sustainable Development. 2013;34(1):199–228.
Pelosi C, Bertrand C, Daniele G, Coeurdassier M, Benoit P, Nélieu S, et al.. Residues of currently used pesticides in soils and earthworms: A silent threat? Agriculture, Ecosystems & Environment. 2021;305.
U.S. EPA. Guidelines for assessing chemical contaminant data for use in fish advisories. Vol. 1. Fish Sampling and Analysis. Washington, DC. 2000.
Salomons W, Brils J. Contaminated Sediments in European River Basins, SedNet—European Sediment Research Network. The Netherlands. 2004.
Chovanec A, Hofer R, Schiemer F. Chapter 18 Fish as bioindicators, Bioindicators & Biomonitors—Principles, Concepts and Applications, pp. 639–676. 2003.
Streit B. Bioaccumulation of contaminants in fish, Fish Ecotoxicology, pp. 353–387. 1998. doi: 10.1007/978-3-0348-8853-0_12 PubMed DOI
Birk S, Bonne W, Borja A, Brucet S, Courrat A, Poikane S, et al.. Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators. 2012;18:31–41.
Oliveira JM, Destro ALF, Freitas MB, Oliveira LL. How do pesticides affect bats?–A brief review of recent publications. Brazilian Journal of Biology. 2021;81(2):499–507. PubMed
Rundlöf M, Andersson GKS, Bommarco R, Fries I, Hederström V, Herbertsson L, et al.. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature. 2015;521(7550):77–80. doi: 10.1038/nature14420 PubMed DOI
Van Langevelde F, Comor V, Bie S, Prins HHT, Thakur MP. Disturbance regulates the density–body‐mass relationship of soil fauna. Ecological Applications. 2019;30(1). doi: 10.1002/eap.2019 PubMed DOI PMC
Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D. Insect decline in the Anthropocene: Death by a thousand cuts. Proceedings of the National Academy of Sciences. 2021;118(2). doi: 10.1073/pnas.2023989118 PubMed DOI PMC
Popp J, Pető K, Nagy J. Pesticide productivity and food security. A review. Agronomy for Sustainable Development. 2012;33(1):243–55.
MacLachlan DJ, Bhula R. Transfer of lipid-soluble pesticides from contaminated feed to livestock, and residue management. Animal Feed Science and Technology. 2009;149(3–4):307–21.
Guvvala PR, Ravindra JP, Selvaraju S. Impact of environmental contaminants on reproductive health of male domestic ruminants: a review. Environmental Science and Pollution Research. 2019;27(4):3819–36. doi: 10.1007/s11356-019-06980-4 PubMed DOI
Yang C, Lim W, Song G. Mechanisms of deleterious effects of some pesticide exposure on pigs. Pesticide Biochemistry and Physiology. 2021;175. doi: 10.1016/j.pestbp.2021.104850 PubMed DOI
EFSA. Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment for plant protection products. EFSA Journal 2014;12(10):3874. 2014. PubMed PMC
Figueiredo DM, Krop EJM, Duyzer J, Gerritsen-Ebben RM, Gooijer YM, Holterman HJ, et al.. Pesticide Exposure of Residents Living Close to Agricultural Fields in the Netherlands: Protocol for an Observational Study. JMIR Research Protocols. 2021;10(4). doi: 10.2196/27883 PubMed DOI PMC
Oerlemans A, Figueiredo DM, Mol JGJ, Nijssen R, Anzion RBM, van Dael MFP, et al.. Personal exposure assessment of pesticides in residents: The association between hand wipes and urinary biomarkers. Environmental Research. 2021;199. doi: 10.1016/j.envres.2021.111282 PubMed DOI
Stout DM, Leidy RB. A preliminary examination of the translocation of microencapsulated cyfluthrin following applications to the perimeter of residential dwellings. Journal of Environmental Science and Health, Part B. 2000;35(4):477–89. doi: 10.1080/03601230009373284 PubMed DOI
Figueiredo DM, Duyzer J, Huss A, Krop EJM, Gerritsen-Ebben MG, Gooijer Y, et al.. Spatio-temporal variation of outdoor and indoor pesticide air concentrations in homes near agricultural fields. Atmospheric Environment. 2021;262.
Nishioka MG, Lewis RG, Brinkman MC, Burkholder HM, Hines CE, Menkedick JR. Distribution of 2,4-D in air and on surfaces inside residences after lawn applications: comparing exposure estimates from various media for young children. Environmental Health Perspectives. 2001;109(11):1185–91. doi: 10.1289/ehp.011091185 PubMed DOI PMC
Arbuckle TE, Bruce D, Ritter L, Hall JC. Indirect sources of herbicide exposure for families on Ontario farms. Journal of Exposure Science & Environmental Epidemiology. 2005;16(1):98–104. PubMed
Sabatier P, Poulenard J, Fanget B, Reyss JL, Develle AL, Wilhelm B, et al.. Long-term relationships among pesticide applications, mobility, and soil erosion in a vineyard watershed. Proceedings of the National Academy of Sciences. 2014;111(44):15647–52. PubMed PMC
Silva V, Mol HGJ, Zomer P, Tienstra M, Ritsema CJ, Geissen V. Pesticide residues in European agricultural soils–A hidden reality unfolded. Sci Total Environ. 2019;653:1532–45. doi: 10.1016/j.scitotenv.2018.10.441 PubMed DOI
Kim S-K. Trophic transfer of organochlorine pesticides through food-chain in coastal marine ecosystem. Environmental Engineering Research. 2019;25(1):43–51.
Palma P, Köck-Schulmeyer M, Alvarenga P, Ledo L, de Alda ML, Barceló D. Occurrence and potential risk of currently used pesticides in sediments of the Alqueva reservoir (Guadiana Basin). Environmental Science and Pollution Research. 2015;22(10):7665–75. doi: 10.1007/s11356-015-4390-1 PubMed DOI
Boithias L, Sauvage S, Merlina G, Jean S, Probst J-L, Sánchez Pérez JM. New insight into pesticide partition coefficient Kd for modelling pesticide fluvial transport: Application to an agricultural catchment in south-western France. Chemosphere. 2014;99:134–42. doi: 10.1016/j.chemosphere.2013.10.050 PubMed DOI
Socorro J, Durand A, Temime-Roussel B, Gligorovski S, Wortham H, Quivet E. The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue. Scientific Reports. 2016;6(1). doi: 10.1038/srep33456 PubMed DOI PMC
FOCUS. “Pesticides in Air: Considerations for Exposure Assessment”. Report of the FOCUS Working Group on Pesticides in Air, EC Document Reference SANCO/10553/2006 Rev 2 June 2008. 327 pp. 2008.
Dhingra N, Diepart M, Dziekan G, Khamassi S, Otaiza F, S. W. WHO guidelines on drawing blood: best practices in phlebotomy (WB 381). 2010.
O’Connell SG, Kincl LD, Anderson KA. Silicone Wristbands as Personal Passive Samplers. Environmental Science & Technology. 2014;48(6):3327–35. PubMed PMC
Aerts R, Joly L, Szternfeld P, Tsilikas K, De Cremer K, Castelain P, et al.. Silicone Wristband Passive Samplers Yield Highly Individualized Pesticide Residue Exposure Profiles. Environmental Science & Technology. 2017;52(1):298–307. doi: 10.1021/acs.est.7b05039 PubMed DOI
Bedi J, Gill J, Kaur P, Aulakh R. Pesticide residues in milk and their relationship with pesticide contamination of feedstuffs supplied to dairy cattle in Punjab (India). Journal of Animal and Feed Sciences. 2018;27(1):18–25.
Nag SK, Raikwar MK. Persistent organochlorine pesticide residues in animal feed. Environmental Monitoring and Assessment. 2010;174(1–4):327–35. doi: 10.1007/s10661-010-1460-1 PubMed DOI
EU Pesticides database. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances/?event=search.as. 2021.
Zomer P, Mol HGJ. Simultaneous quantitative determination, identification and qualitative screening of pesticides in fruits and vegetables using LC-Q-Orbitrap™-MS. Food Additives & Contaminants: Part A. 2015;32(10):1628–36. doi: 10.1080/19440049.2015.1085652 PubMed DOI
Mol HGJ, Tienstra M, Zomer P. Evaluation of gas chromatography–electron ionization–full scan high resolution Orbitrap mass spectrometry for pesticide residue analysis. Analytica Chimica Acta. 2016;935:161–72. doi: 10.1016/j.aca.2016.06.017 PubMed DOI
Riedo J, Wettstein FE, Rösch A, Herzog C, Banerjee S, Büchi L, et al.. Widespread Occurrence of Pesticides in Organically Managed Agricultural Soils—the Ghost of a Conventional Agricultural Past? Environmental Science & Technology. 2021;55(5):2919–28. doi: 10.1021/acs.est.0c06405 PubMed DOI
Marlier F, Letinois L, Salomon M. LCSQA/Ineris-DRC-20-172794-02007D | Résultats de la Campagne Nationale Exploratoire de mesure des résidus de Pesticides dans l’air ambiant (2018–2019). https://www.lcsqa.org/fr/rapport/resultats-de-la-campagne-nationale-exploratoire-de-mesure-des-residus-de-pesticides-dans 2020.
EFSA. The 2018 European Union report on pesticide residues in food. EFSA Journal 2020;18(4):6057, 103 pp. 2020. doi: 10.2903/j.efsa.2020.6057 PubMed DOI PMC
Mol JGJ, de Rijk T, Egmond H, de Jong J. Occurrence of mycotoxins and pesticides in straw and hay used as animal feed. RIKILT report 2014.006. 2014.
Ciffroy P, Alfonso B, Altenpohl A, Banjac Z, Bierkens J, Brochot C, et al.. Modelling the exposure to chemicals for risk assessment: a comprehensive library of multimedia and PBPK models for integration, prediction, uncertainty and sensitivity analysis–the MERLIN-Expo tool. Sci Total Environ. 2016;568:770–84. doi: 10.1016/j.scitotenv.2016.03.191 PubMed DOI
Hauck M, Hendriks HWM, Huijbregts MAJ, Ragas AMJ, van de Meent D, Hendriks AJ. Parameter uncertainty in modeling bioaccumulation factors of fish. Environmental Toxicology and Chemistry. 2011;30(2):403–12. doi: 10.1002/etc.393 PubMed DOI
Roeben V, Oberdoerster S, Rakel KJ, Liesy D, Capowiez Y, Ernst G, et al.. Towards a spatiotemporally explicit toxicokinetic-toxicodynamic model for earthworm toxicity. Sci Total Environ. 2020;722. doi: 10.1016/j.scitotenv.2020.137673 PubMed DOI
Wee SY, Aris AZ. Ecological risk estimation of organophosphorus pesticides in riverine ecosystems. Chemosphere. 2017;188:575–81. doi: 10.1016/j.chemosphere.2017.09.035 PubMed DOI