Lycium barbarum polysaccharides alleviate LPS-induced inflammatory responses through PPARγ/MAPK/NF-κB pathway in bovine mammary epithelial cells

. 2022 Jan 01 ; 100 (1) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34791267

Grantová podpora
32102731 National Natural Science Foundation of China

UNLABELLED: As the main component of the Gram-negative bacterial cell wall, lipopolysaccharide (LPS) is well documented as an inducer of inflammation in bovine mammary cells. Lycium barbarum (goji) polysaccharides (LBP) have been used in nonruminants as prebiotics to improve growth performance, immune ability, and antioxidant capacity. We aimed to investigate the underlying effects of LBPs on proinflammatory responses in LPS-stimulated primary bovine mammary epithelial cells (bMECs). Cells were isolated from mammary tissue of three lactating Holstein cows without clinical disease (30.26 ± 3.1 kg/d of milk yield; 175 ± 6 DIM). For the pre-experimental treatment, bMECs were precultured with serum-free medium for 12 h. Treatments were as follows: pretreatment with culture medium devoid of LPS or LBP for 30 h (CON); CON for 24 h followed by challenge with 2 μg/mL LPS for 6 h (LPS); pretreatment with 100 or 300 μg/mL LBP for 24 h followed by LPS challenge (2 μg/mL) for 6 h (LBP(100)+LPS; LBP(300)+LPS). To further determine if the effect of LBP on immuneregulation is peroxisome proliferator-activated receptor-γ (PPARγ) activation dependent, an inhibitor of PPARγ, GW9662, at a concentration of 1 μM was used. Cells treated with LBP at 100, 300, and 500 μg/mL had upregulated protein abundance of PPARγ, while PGC1α had a higher expression only at 300 μg/mL of LBP treatment. Compared with CON, cells pretreated with LBP at 100 and 300 μg/mL had greater protein abundance of SCD1 and SREBP1. 5-Ethynyl-2'-deoxyuridine (EdU) staining and cell wound healing assays showed that the negative effect of LPS alone on cell proliferation was reversed by pretreatment with LBP at both 100 and 300 μg/mL. Upregulation of gene and protein abundance of proinflammatory factors and cytokines (COX-2, NLRP3, TNF-α, IL-1β, and IL-6) induced by LPS stimulation were alleviated by LBP pretreatment at 300 μg/mL (more than 2-fold decrease). Compared with LPS challenge alone, phosphorylation of proteins involved in NF-κB (IκBα and p65) and MAPK (p38, JNK, and ERK) pathways was downregulated following LBP treatment. Additionally, inhibition of PPARγ by GW9662 weakened the protective effect of LBP on LPS-induced protein abundance of phosphorylated p65, COX-2, IL-1β, and TNF-α. These results indicated that the protective effect of LBP on LPS-induced bMECs inflammatory responses is PPARγ activation-dependent. As such, this knowledge might help design strategies for intervening against the detrimental effects of bovine mastitis. INTERPRETIVE SUMMARY: Current research examined Lycium barbarum polysaccharides (LBP) for combating LPS-induced inflammatory responses in primary bovine mammary epithelial cells. We uncovered a preventive role of LBP in reducing detrimental effects induced by LPS including inhibition of NF-κB and MAPK along with peroxisome proliferator-activated receptor-γ (PPARγ) activation. The decrease in cell proliferation due to LPS was curtailed by pretreatment with LBP. Moreover, the effect of LBP on regulation of inflammatory responses in bovine mammary epithelial cell was PPARγ dependent. Collectively, data suggest that LBP reverses LPS-induced inflammatory response via MAPK/NF-κB signaling in a PPARγ-activation-dependent manner. Thus, the study provides new insights into therapeutic strategies for combating mastitis using LBP and highlighted the link between PPARγ and regulation of mammary cell inflammation.

Zobrazit více v PubMed

Are, A., Aronsson L., Wang S., Greicius G., Lee Y. K., Gustafsson J. A., Pettersson S., and Arulampalam V.. . 2008. Enterococcus faecalis from newborn babies regulate endogenous PPARgamma activity and IL-10 levels in colonic epithelial cells. Proc. Natl. Acad. Sci. USA. 105:1943–1948. doi:10.1073/pnas.0711734105. PubMed DOI PMC

Bionaz, M., Chen S., Khan M. J., and Loor J. J.. . 2013. Functional role of PPARs in ruminants: potential targets for fine-tuning metabolism during growth and lactation. PPAR Res. 2013:684159. doi:10.1155/2013/684159. PubMed DOI PMC

Blum, S. E., Heller E. D., Jacoby S., Krifucks O., and Leitner G.. . 2017. Comparison of the immune responses associated with experimental bovine mastitis caused by different strains of Escherichia coli. J. Dairy Res. 84:190–197. doi:10.1017/S0022029917000206. PubMed DOI

Carl-Fredrik, J., Josef D., Ann-Marie G., Ida W., Moazzami A. A., Karin s., and Gunnar P.. . 2018. The effect of lipopolysaccharide-induced experimental bovine mastitis on clinical parameters, inflammatory markers, and the metabolome: a kinetic approach. Front. Immunol. 9:1487. doi: 10.3389/fimmu.2018.01487 PubMed DOI PMC

Chen, Z., Chu S., Wang X., Sun Y., Xu T., Mao Y., Loor J. J., and Yang Z.. . 2019. MiR-16a regulates milk fat metabolism by targeting large tumor suppressor kinase 1 (LATS1) in bovine mammary epithelial cells. J. Agric. Food Chem. 67:11167–11178. doi:10.1021/acs.jafc.9b04883. PubMed DOI

Chen, L., Li W., Qi D., and Wang D.. . 2018. Lycium barbarum polysaccharide protects against LPS-induced ARDS by inhibiting apoptosis, oxidative stress, and inflammation in pulmonary endothelial cells. Free Radic. Res. 52:480–490. doi:10.1080/10715762.2018.1447105. PubMed DOI

Chen, J., Long L., Jiang Q., Kang B., Li Y., and Yin J.. . 2020a. Effects of dietary supplementation of Lycium barbarum polysaccharides on growth performance, immune status, antioxidant capacity and selected microbial populations of weaned piglets. J. Anim. Physiol. Anim. Nutr. (Berl.). 104:1106–1115. doi:10.1111/jpn.13247. PubMed DOI

Chen, F., Wang M., O’Connor J. P., He M., Tripathi T., and Harrison L. E.. . 2003. Phosphorylation of PPARgamma via active ERK1/2 leads to its physical association with p65 and inhibition of NF-kappabeta. J. Cell. Biochem. 90:732–744. doi:10.1002/jcb.10668. PubMed DOI

Chen, Z., Zhang Y., Zhou J., Lu L., Wang X., Liang Y., Loor J. J., Gou D., Xu H., and Yang Z.. . 2020b. Tea tree oil prevents mastitis-associated inflammation in lipopolysaccharide-stimulated bovine mammary epithelial cells. Front. Vet. Sci. 7:496. doi:10.3389/fvets.2020.00496. PubMed DOI PMC

Cheng, J., Zhou Z. W., Sheng H. P., He L. J., Fan X. W., He Z. X., Sun T., Zhang X., Zhao R. J., Gu L., . et al. 2015. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug Des. Dev. Ther. 9:33–78. doi:10.2147/DDDT.S72892. PubMed DOI PMC

Dai, H., Coleman D. N., Hu L., Martinez-Cortés I., Wang M., Parys C., Shen X., and Loor J. J.. . 2020a. Methionine and arginine supplementation alter inflammatory and oxidative stress responses during lipopolysaccharide challenge in bovine mammary epithelial cells in vitro. J. Dairy Sci. 103:676–689. doi:10.3168/jds.2019-16631. PubMed DOI

Dai, H., Wei G., Wang Y., Ma N., Chang G., and Shen X.. . 2020b. Sodium butyrate promotes lipopolysaccharide-induced innate immune responses by enhancing mitogen-activated protein kinase activation and histone acetylation in bovine mammary epithelial cells. J. Dairy Sci. 103:11636–11652. doi:10.3168/jds.2020-18198. PubMed DOI

De Vliegher, S., Fox L. K., Piepers S., McDougall S., and Barkema H. W.. . 2012. Invited review: Mastitis in dairy heifers: nature of the disease, potential impact, prevention, and control. J. Dairy Sci. 95: 1025–1040. doi:10.3168/jds.2010-4074. PubMed DOI

Fu, Y., Gao R., Cao Y., Guo M., Wei Z., Zhou E., Li Y., Yao M., Yang Z., and Zhang N.. . 2014. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int. Immunopharmacol. 20:54–58. doi:10.1016/j.intimp.2014.01.024. PubMed DOI

Giovannini, A. E. J., van den Borne B. H. P., Wall S. K., Wellnitz O., Bruckmaier R. M., and Spadavecchia C.. . 2017. Experimentally induced subclinical mastitis: are lipopolysaccharide and lipoteichoic acid eliciting similar pain responses? Acta Vet. Scand. 59:40. doi:10.1186/s13028-017-0306-z. PubMed DOI PMC

Hao, Z., Li Z., Huo J., Li J., Liu F., and Yin P.. . 2021. Effects of Chinese wolfberry and Astragalus extract on the antioxidant capacity of Tibetan pig liver. PLoS One 16:e0245749. doi:10.1371/journal.pone.0245749. PubMed DOI PMC

Hasan, A. U., Rahman A., and Kobori H.. . 2019. Interactions between host PPARs and gut microbiota in health and disease. Int. J. Mol. Sci. 20:387. doi: 10.3390/ijms20020387 PubMed DOI PMC

Hayden, M. S., and Ghosh S.. . 2011. NF-κB in immunobiology. Cell Res. 21:223–244. doi:10.1038/cr.2011.13. PubMed DOI PMC

He, X., Liu W., Shi M., Yang Z., Zhang X., and Gong P.. . 2017. Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by regulating the PPARγ/NF-κB pathways in primary bovine mammary epithelial cells. Res. Vet. Sci. 112:7–12. doi:10.1016/j.rvsc.2016.12.011. PubMed DOI

Hinson, R. M., Williams J. A., and Shacter E.. . 1996. Elevated interleukin 6 is induced by prostaglandin E2 in a murine model of inflammation: possible role of cyclooxygenase-2. Proc. Natl. Acad. Sci. USA. 93:4885–4890. doi:10.1073/pnas.93.10.4885. PubMed DOI PMC

Hong, F., Pan S., Guo Y., Xu P., and Zhai Y.. . 2019. PPARs as nuclear receptors for nutrient and energy metabolism. Molecules 24:2545. doi: 10.3390/molecules24142545 PubMed DOI PMC

Hou, Y., Moreau F., and Chadee K.. . 2012. PPARγ is an E3 ligase that induces the degradation of NFκB/p65. Nat. Commun. 3:1300. doi:10.1038/ncomms2270. PubMed DOI

Jiang, A., Zhang Y., Zhang X., Wu D., Liu Z., Li S., Liu X., Han Z., Wang C., Wang J., . et al. 2020. Morin alleviates LPS-induced mastitis by inhibiting the PI3K/AKT, MAPK, NF-κB and NLRP3 signaling pathway and protecting the integrity of blood-milk barrier. Int. Immunopharmacol. 78:105972. doi:10.1016/j.intimp.2019.105972. PubMed DOI

Kadegowda, A. K., Bionaz M., Piperova L. S., Erdman R. A., and Loor J. J.. . 2009. Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. J. Dairy Sci. 92:4276–4289. doi:10.3168/jds.2008-1932. PubMed DOI

Kang, J. S., Yoon Y. D., Lee K. H., Park S. K., and Kim H. M.. . 2004. Costunolide inhibits interleukin-1beta expression by down-regulation of AP-1 and MAPK activity in LPS-stimulated RAW 264.7 cells. Biochem. Biophys. Res. Commun. 313:171–177. doi:10.1016/j.bbrc.2003.11.109. PubMed DOI

Kim, J. S., Lee Y. H., Chang Y. U., and Yi H. K.. . 2017. PPARγ regulates inflammatory reaction by inhibiting the MAPK/NF-κB pathway in C2C12 skeletal muscle cells. J. Physiol. Biochem. 73:49–57. doi:10.1007/s13105-016-0523-3. PubMed DOI

Kundu, P., Ling T. W., Korecka A., Li Y., D’Arienzo R., Bunte R. M., Berger T., Arulampalam V., Chambon P., Mak T. W., . et al. 2014. Absence of intestinal PPARγ aggravates acute infectious colitis in mice through a lipocalin-2-dependent pathway. PLoS Pathog. 10:e1003887. doi:10.1371/journal.ppat.1003887. PubMed DOI PMC

Lamichane, S., Dahal Lamichane B., and Kwon S. M.. . 2018. Pivotal roles of peroxisome proliferator-activated receptors (PPARs) and their signal cascade for cellular and whole-body energy homeostasis. Int. J. Mol. Sci. 19:949. doi: 10.3390/ijms19040949 PubMed DOI PMC

Li, D., Fu Y., Zhang W., Su G., Liu B., Guo M., Li F., Liang D., Liu Z., Zhang X., . et al. 2013. Salidroside attenuates inflammatory responses by suppressing nuclear factor-κB and mitogen activated protein kinases activation in lipopolysaccharide-induced mastitis in mice. Inflamm. Res. 62:9–15. doi:10.1007/s00011-012-0545-4. PubMed DOI

Liang, D., Li F., Fu Y., Cao Y., Song X., Wang T., Wang W., Guo M., Zhou E., Li D., . et al. 2014. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-κB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation 37:214–222. doi:10.1007/s10753-013-9732-x. PubMed DOI

Liu, Y., Jia Y., Yang K., Li R., Xiao X., Zhu K., and Wang Z.. . 2020. Metformin restores tetracyclines susceptibility against multidrug resistant bacteria. Adv. Sci. (Weinh). 7:1902227. doi:10.1002/advs.201902227. PubMed DOI PMC

Liu, W., Xu J., Zhu R., Zhu Y., Zhao Y., Chen P., Pan C., Yao W., and Gao X.. . 2015. Fingerprinting profile of polysaccharides from Lycium barbarum using multiplex approaches and chemometrics. Int. J. Biol. Macromol. 78:230–237. doi:10.1016/j.ijbiomac.2015.03.062. PubMed DOI

Long, L. N., Kang B. J., Jiang Q., and Chen J. S.. . 2020. Effects of dietary Lycium barbarum polysaccharides on growth performance, digestive enzyme activities, antioxidant status, and immunity of broiler chickens. Poult. Sci. 99:744–751. doi:10.1016/j.psj.2019.10.043. PubMed DOI PMC

Loor, J. J., Moyes K. M., and Bionaz M.. . 2011. Functional adaptations of the transcriptome to mastitis-causing pathogens: the mammary gland and beyond. J. Mammary Gland Biol. Neoplasia 16:305–322. doi:10.1007/s10911-011-9232-2. PubMed DOI

Ma, N., Chang G., Huang J., Wang Y., Gao Q., Cheng X., Liu J., and Shen X.. . 2019. cis-9, trans-11-Conjugated linoleic acid exerts an anti-inflammatory effect in bovine mammary epithelial cells after Escherichia coli stimulation through NF-κB signaling pathway. J. Agric. Food Chem. 67:193–200. doi:10.1021/acs.jafc.8b05500. PubMed DOI

Moyes, K. M., Drackley J. K., Morin D. E., Bionaz M., Rodriguez-Zas S. L., Everts R. E., Lewin H. A., and Loor J. J.. . 2009. Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARgamma signaling as potential mechanism for the negative relationships between immune response and lipid metabolism. BMC Genomics 10:542. doi:10.1186/1471-2164-10-542. PubMed DOI PMC

Nakajima, Y., Mikami O., Yoshioka M., Motoi Y., Ito T., Ishikawa Y., Fuse M., Nakano K., and Yasukawa K.. . 1997. Elevated levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) activities in the sera and milk of cows with naturally occurring coliform mastitis. Res. Vet. Sci. 62:297–298. doi:10.1016/s0034-5288(97)90209-5. PubMed DOI

Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45. doi:10.1093/nar/29.9.e45. PubMed DOI PMC

Shizuo, A., Satoshi U., and Osamu T.. . 2006. Pathogen recognition and innate immunity. Cell 124:783–801. doi: 10.1016/j.cell.2006.02.015 PubMed DOI

Takeda, K., Kaisho T., and Akira S.. . 2003. Toll-like receptors. Annu. Rev. Immunol. 21:335–376. doi:10.1146/annurev.immunol.21.120601.141126. PubMed DOI

Thomas, F. C., Mullen W., Tassi R., Ramírez-Torres A., Mudaliar M., McNeilly T. N., Zadoks R. N., Burchmore R., and David Eckersall P.. . 2016. Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 1. High abundance proteins, acute phase proteins and peptidomics. Mol. Biosyst. 12:2735–2747. doi:10.1039/c6mb00239k. PubMed DOI PMC

Wang, H., Bi C., Wang Y., Sun J., Meng X., and Li J.. . 2018. Selenium ameliorates Staphylococcus aureus-induced inflammation in bovine mammary epithelial cells by inhibiting activation of TLR2, NF-κB and MAPK signaling pathways. BMC Vet. Res. 14:197. doi:10.1186/s12917-018-1508-y. PubMed DOI PMC

Wang, T., Guo M., Song X., Zhang Z., Jiang H., Wang W., Fu Y., Cao Y., Zhu L., and Zhang N.. . 2014. Stevioside plays an anti-inflammatory role by regulating the NF-κB and MAPK pathways in S. aureus-infected mouse mammary glands. Inflammation 37:1837–1846. doi:10.1007/s10753-014-9915-0. PubMed DOI

Wang, J., Guo C., Wei Z., He X., Kou J., Zhou E., Yang Z., and Fu Y.. . 2016a. Morin suppresses inflammatory cytokine expression by downregulation of nuclear factor-κB and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide-stimulated primary bovine mammary epithelial cells. J. Dairy Sci. 99:3016–3022. doi:10.3168/jds.2015-10330. PubMed DOI

Wang, X. G., Ju Z. H., Hou M. H., Jiang Q., Yang C. H., Zhang Y., Sun Y., Li R. L., Wang C. F., Zhong J. F., . et al. 2016b. Correction: deciphering transcriptome and complex alternative splicing transcripts in mammary gland tissues from cows naturally infected with Staphylococcus aureus mastitis. PLoS One 11:e0167666. doi:10.1371/journal.pone.0167666. PubMed DOI PMC

Wellnitz, O., and Kerr D. E.. . 2004. Cryopreserved bovine mammary cells to model epithelial response to infection. Vet. Immunol. Immunopathol. 101:191–202. doi:10.1016/j.vetimm.2004.04.019. PubMed DOI

Xiao, J., Liong E. C., Ching Y. P., Chang R. C., So K. F., Fung M. L., and Tipoe G. L.. . 2012. Lycium barbarum polysaccharides protect mice liver from carbon tetrachloride-induced oxidative stress and necroinflammation. J. Ethnopharmacol. 139:462–470. doi:10.1016/j.jep.2011.11.033. PubMed DOI

Xu, T., Lu X., Arbab A. A. I., Wu X., Mao Y., Loor J. J., and Yang Z.. . 2021a. Metformin acts to suppress β-hydroxybutyric acid-mediated inflammatory responses through activation of AMPK signaling in bovine hepatocytes. J. Anim. Sci. 99. doi: 10.1093/jas/skab153 PubMed DOI PMC

Xu, T., Ma N., Wang Y., Shi X., Chang G., Loor J. J., and Shen X.. . 2018. Sodium butyrate supplementation alleviates the adaptive response to inflammation and modulates fatty acid metabolism in lipopolysaccharide-stimulated bovine hepatocytes. J. Agric. Food Chem. 66:6281–6290. doi:10.1021/acs.jafc.8b01439. PubMed DOI

Xu, T. L., Seyfert H. M., and Shen X. Z.. . 2017. Epigenetic mechanisms contribute to decrease stearoyl-CoA desaturase 1 expression in the liver of dairy cows after prolonged feeding of high-concentrate diet. J. Dairy Sci. 101:2506–2518. doi:10.3168/jds.2017-12878. PubMed DOI

Xu, T., Tao H., Chang G., Zhang K., Xu L., and Shen X.. . 2015. Lipopolysaccharide derived from the rumen down-regulates stearoyl-CoA desaturase 1 expression and alters fatty acid composition in the liver of dairy cows fed a high-concentrate diet. BMC Vet. Res. 11:52. doi:10.1186/s12917-015-0360-6. PubMed DOI PMC

Xu, T., Wu X., Lu X., Liang Y., Mao Y., Loor J. J., and Yang Z.. . 2021b. Metformin activated AMPK signaling contributes to the alleviation of LPS-induced inflammatory responses in bovine mammary epithelial cells. BMC Vet. Res. 17:97. doi:10.1186/s12917-021-02797-x. PubMed DOI PMC

Yu, M. S., Leung S. K., Lai S. W., Che C. M., Zee S. Y., So K. F., Yuen W. H., and Chang R. C.. . 2005. Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against beta-amyloid peptide neurotoxicity. Exp. Gerontol. 40:716–727. doi:10.1016/j.exger.2005.06.010. PubMed DOI

Zenhom, M., Hyder A., de Vrese M., Heller K. J., Roeder T., and Schrezenmeir J.. . 2011. Prebiotic oligosaccharides reduce proinflammatory cytokines in intestinal Caco-2 cells via activation of PPARγ and peptidoglycan recognition protein 3. J. Nutr. 141:971–977. doi:10.3945/jn.110.136176. PubMed DOI

Zhang, H., Zheng L., and Yuan Z.. . 2019. Lycium barbarum polysaccharides promoted proliferation and differentiation in osteoblasts. J. Cell. Biochem. 120:5018–5023. doi:10.1002/jcb.27777. PubMed DOI

Zhou, Y., Zhou Z., Peng J., and Loor J. J.. . 2018. Methionine and valine activate the mammalian target of rapamycin complex 1 pathway through heterodimeric amino acid taste receptor (TAS1R1/TAS1R3) and intracellular Ca2+ in bovine mammary epithelial cells. J. Dairy Sci. 101:11354–11363. doi:10.3168/jds.2018-14461. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...