Heterologous expression and purification of recombinant human protoporphyrinogen oxidase IX: A comparative study
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
34793488
PubMed Central
PMC8601502
DOI
10.1371/journal.pone.0259837
PII: PONE-D-21-04430
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- Escherichia coli genetika MeSH
- flavoproteiny biosyntéza genetika izolace a purifikace MeSH
- HEK293 buňky MeSH
- lidé MeSH
- mitochondriální proteiny biosyntéza genetika izolace a purifikace MeSH
- protoporfyrinogenoxidasa biosyntéza genetika izolace a purifikace MeSH
- rekombinantní fúzní proteiny biosyntéza genetika izolace a purifikace MeSH
- Sf9 buňky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- flavoproteiny MeSH
- mitochondriální proteiny MeSH
- PPOX protein, human MeSH Prohlížeč
- protoporfyrinogenoxidasa MeSH
- rekombinantní fúzní proteiny MeSH
Human protoporphyrinogen oxidase IX (hPPO) is an oxygen-dependent enzyme catalyzing the penultimate step in the heme biosynthesis pathway. Mutations in the enzyme are linked to variegate porphyria, an autosomal dominant metabolic disease. Here we investigated eukaryotic cells as alternative systems for heterologous expression of hPPO, as the use of a traditional bacterial-based system failed to produce several clinically relevant hPPO variants. Using bacterially-produced hPPO, we first analyzed the impact of N-terminal tags and various detergent on hPPO yield, and specific activity. Next, the established protocol was used to compare hPPO constructs heterologously expressed in mammalian HEK293T17 and insect Hi5 cells with prokaryotic overexpression. By attaching various fusion partners at the N- and C-termini of hPPO we also evaluated the influence of the size and positioning of fusion partners on expression levels, specific activity, and intracellular targeting of hPPO fusions in mammalian cells. Overall, our results suggest that while enzymatically active hPPO can be heterologously produced in eukaryotic systems, the limited availability of the intracellular FAD co-factor likely negatively influences yields of a correctly folded protein making thus the E.coli a system of choice for recombinant hPPO overproduction. At the same time, PPO overexpression in eukaryotic cells might be preferrable in cases when the effects of post-translational modifications (absent in bacteria) on target protein functions are studied.
Zobrazit více v PubMed
Heinemann IU, Jahn M, Jahn D. The biochemistry of heme biosynthesis. Arch Biochem Biophys. 2008;474(2):238–51. doi: 10.1016/j.abb.2008.02.015 PubMed DOI
Jacobs JM, Jacobs NJ. Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and haem biosynthesis. Purification and partial characterization of the enzyme from barley organelles. Biochem J. 1987;244(1):219–24. doi: 10.1042/bj2440219 PubMed DOI PMC
Hao GF, Zuo Y, Yang SG, Yang GF. Protoporphyrinogen oxidase inhibitor: an ideal target for herbicide discovery. Chimia (Aarau). 2011;65(12):961–9. doi: 10.2533/chimia.2011.961 PubMed DOI
Umetsu N, Shirai Y. Development of novel pesticides in the 21st century. J Pestic Sci. 2020;45(2):54–74. doi: 10.1584/jpestics.D20-201 PubMed DOI PMC
Brenner DA, Bloomer JR. The enzymatic defect in variegate prophyria. Studies with human cultured skin fibroblasts. N Engl J Med. 1980;302(14):765–9. doi: 10.1056/NEJM198004033021401 PubMed DOI
Deybach JC, Puy H, Robreau AM, Lamoril J, Da Silva V, Grandchamp B, et al.. Mutations in the protoporphyrinogen oxidase gene in patients with variegate porphyria. Hum Mol Genet. 1996;5(3):407–10. doi: 10.1093/hmg/5.3.407 PubMed DOI
Meissner PN, Dailey TA, Hift RJ, Ziman M, Corrigall AV, Roberts AG, et al.. A R59W mutation in human protoporphyrinogen oxidase results in decreased enzyme activity and is prevalent in South Africans with variegate porphyria. Nat Genet. 1996;13(1):95–7. doi: 10.1038/ng0596-95 PubMed DOI
Kirsch RE, Meissner PN, Hift RJ. Variegate porphyria. Semin Liver Dis. 1998;18(1):33–41. doi: 10.1055/s-2007-1007138 PubMed DOI
Wang B, Wen X, Qin X, Wang Z, Tan Y, Shen Y, et al.. Quantitative structural insight into human variegate porphyria disease. J Biol Chem. 2013;288(17):11731–40. doi: 10.1074/jbc.M113.459768 PubMed DOI PMC
Deybach JC, da Silva V, Grandchamp B, Nordmann Y. The mitochondrial location of protoporphyrinogen oxidase. Eur J Biochem. 1985;149(2):431–5. doi: 10.1111/j.1432-1033.1985.tb08943.x PubMed DOI
von und zu Fraunberg M, Nyroen T, Kauppinen R. Mitochondrial targeting of normal and mutant protoporphyrinogen oxidase. J Biol Chem. 2003;278(15):13376–81. doi: 10.1074/jbc.M300151200 PubMed DOI
Morgan RR, Errington R, Elder GH. Identification of sequences required for the import of human protoporphyrinogen oxidase to mitochondria. Biochem J. 2004;377(Pt 2):281–7. doi: 10.1042/BJ20030978 PubMed DOI PMC
Davids LM, Corrigall AV, Meissner PN. Mitochondrial targeting of human protoporphyrinogen oxidase. Cell Biol Int. 2006;30(5):416–26. doi: 10.1016/j.cellbi.2006.02.001 PubMed DOI
Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, et al.. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science. 2013;339(6125):1328–31. doi: 10.1126/science.1230593 PubMed DOI PMC
Ferreira GC, Andrew TL, Karr SW, Dailey HA. Organization of the terminal two enzymes of the heme biosynthetic pathway. Orientation of protoporphyrinogen oxidase and evidence for a membrane complex. J Biol Chem. 1988;263(8):3835–9. PubMed
Proulx KL, Woodard SI, Dailey HA. In situ conversion of coproporphyrinogen to heme by murine mitochondria: terminal steps of the heme biosynthetic pathway. Protein Sci. 1993;2(7):1092–8. doi: 10.1002/pro.5560020703 PubMed DOI PMC
Wu CK, Dailey HA, Rose JP, Burden A, Sellers VM, Wang BC. The 2.0 A structure of human ferrochelatase, the terminal enzyme of heme biosynthesis. Nat Struct Biol. 2001;8(2):156–60. doi: 10.1038/84152 PubMed DOI
Medlock AE, Shiferaw MT, Marcero JR, Vashisht AA, Wohlschlegel JA, Phillips JD, et al.. Identification of the Mitochondrial Heme Metabolism Complex. PLoS One. 2015;10(8):e0135896. doi: 10.1371/journal.pone.0135896 PubMed DOI PMC
Camadro JM, Abraham NG, Levere RD. Kinetic properties of the membrane-bound human liver mitochondrial protoporphyrinogen oxidase. Arch Biochem Biophys. 1985;242(1):206–12. doi: 10.1016/0003-9861(85)90494-1 PubMed DOI
Dailey HA, Karr SW. Purification and characterization of murine protoporphyrinogen oxidase. Biochemistry. 1987;26(10):2697–701. doi: 10.1021/bi00384a007 PubMed DOI
Ferreira GC, Dailey HA. Mouse protoporphyrinogen oxidase. Kinetic parameters and demonstration of inhibition by bilirubin. Biochem J. 1988;250(2):597–603. doi: 10.1042/bj2500597 PubMed DOI PMC
Proulx KL, Dailey HA. Characteristics of murine protoporphyrinogen oxidase. Protein Sci. 1992;1(6):801–9. doi: 10.1002/pro.5560010612 PubMed DOI PMC
Camadro JM, Thome F, Brouillet N, Labbe P. Purification and properties of protoporphyrinogen oxidase from the yeast Saccharomyces cerevisiae. Mitochondrial location and evidence for a precursor form of the protein. J Biol Chem. 1994;269(51):32085–91. PubMed
Qin X, Tan Y, Wang L, Wang Z, Wang B, Wen X, et al.. Structural insight into human variegate porphyria disease. FASEB J. 2011;25(2):653–64. doi: 10.1096/fj.10-170811 PubMed DOI
Koch M, Breithaupt C, Kiefersauer R, Freigang J, Huber R, Messerschmidt A. Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis. EMBO J. 2004;23(8):1720–8. doi: 10.1038/sj.emboj.7600189 PubMed DOI PMC
Dailey TA, Dailey HA. Human protoporphyrinogen oxidase: expression, purification, and characterization of the cloned enzyme. Protein Sci. 1996;5(1):98–105. doi: 10.1002/pro.5560050112 PubMed DOI PMC
Maneli MH, Corrigall AV, Klump HH, Davids LM, Kirsch RE, Meissner PN. Kinetic and physical characterisation of recombinant wild-type and mutant human protoporphyrinogen oxidases. Biochim Biophys Acta. 2003;1650(1–2):10–21. doi: 10.1016/s1570-9639(03)00186-9 PubMed DOI
de Marco A, Volrath S, Bruyere T, Law M, Fonne-Pfister R. Recombinant maize protoporphyrinogen IX oxidase expressed in Escherichia coli forms complexes with GroEL and DnaK chaperones. Protein Expr Purif. 2000;20(1):81–6. doi: 10.1006/prep.2000.1274 PubMed DOI
Camadro JM, Matringe M, Thome F, Brouillet N, Mornet R, Labbe P. Photoaffinity labeling of protoporphyrinogen oxidase, the molecular target of diphenylether-type herbicides. Eur J Biochem. 1995;229(3):669–74. doi: 10.1111/j.1432-1033.1995.tb20512.x PubMed DOI
Lemaitre RP, Bogdanova A, Borgonovo B, Woodruff JB, Drechsel DN. FlexiBAC: a versatile, open-source baculovirus vector system for protein expression, secretion, and proteolytic processing. BMC Biotechnol. 2019;19(1):20. doi: 10.1186/s12896-019-0512-z PubMed DOI PMC
Shepherd M, Dailey HA. A continuous fluorimetric assay for protoporphyrinogen oxidase by monitoring porphyrin accumulation. Anal Biochem. 2005;344(1):115–21. doi: 10.1016/j.ab.2005.06.012 PubMed DOI PMC
Skultetyova L, Ustinova K, Kutil Z, Novakova Z, Pavlicek J, Mikesova J, et al.. Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci Rep. 2017;7(1):11547. doi: 10.1038/s41598-017-11739-3 PubMed DOI PMC
Brenner DA, Bloomer JR. A fluorometric assay for measurement of protoporphyrinogen oxidase activity in mammalian tissue. Clin Chim Acta. 1980;100(3):259–66. doi: 10.1016/0009-8981(80)90275-2 PubMed DOI
Jacobs NJ, Jacobs JM. Assay for enzymatic protoporphyrinogen oxidation, a late step in heme synthesis. Enzyme. 1982;28(2–3):206–19. doi: 10.1159/000459103 PubMed DOI
Corradi HR, Corrigall AV, Boix E, Mohan CG, Sturrock ED, Meissner PN, et al.. Crystal structure of protoporphyrinogen oxidase from Myxococcus xanthus and its complex with the inhibitor acifluorfen. J Biol Chem. 2006;281(50):38625–33. doi: 10.1074/jbc.M606640200 PubMed DOI PMC
Watanabe N, Che FS, Terashima K, Takayama S, Yoshida S, Isogai A. Purification and properties of protoporphyrinogen oxidase from spinach chloroplasts. Plant Cell Physiol. 2000;41(7):889–92. doi: 10.1093/pcp/pcd007 PubMed DOI
Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, et al.. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol. 2008;3(6):373–82. doi: 10.1021/cb800025k PubMed DOI
Dailey TA, Dailey HA, Meissner P, Prasad AR. Cloning, sequence, and expression of mouse protoporphyrinogen oxidase. Arch Biochem Biophys. 1995;324(2):379–84. doi: 10.1006/abbi.1995.0051 PubMed DOI
Moriyama Y. Riboflavin transporter is finally identified. J Biochem. 2011;150(4):341–3. doi: 10.1093/jb/mvr095 PubMed DOI
Yamamoto S, Inoue K, Ohta KY, Fukatsu R, Maeda JY, Yoshida Y, et al.. Identification and functional characterization of rat riboflavin transporter 2. J Biochem. 2009;145(4):437–43. doi: 10.1093/jb/mvn181 PubMed DOI
Fujimura M, Yamamoto S, Murata T, Yasujima T, Inoue K, Ohta KY, et al.. Functional characteristics of the human ortholog of riboflavin transporter 2 and riboflavin-responsive expression of its rat ortholog in the small intestine indicate its involvement in riboflavin absorption. J Nutr. 2010;140(10):1722–7. doi: 10.3945/jn.110.128330 PubMed DOI
Garcia-Angulo VA. Overlapping riboflavin supply pathways in bacteria. Crit Rev Microbiol. 2017;43(2):196–209. doi: 10.1080/1040841X.2016.1192578 PubMed DOI
Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res. 2002;30(14):3141–51. doi: 10.1093/nar/gkf433 PubMed DOI PMC
Wang X, Wang Q, Qi Q. Identification of riboflavin: revealing different metabolic characteristics between Escherichia coli BL21(DE3) and MG1655. FEMS Microbiol Lett. 2015;362(11). PubMed