Graphitic Carbon Nitride as a Platform for the Synthesis of Silver Nanoclusters
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-15199S
grantová agentura české republiky
CZ.02.1.01/0.0/0.0/16_019/0000853
ministerstvo školství, mládeže a tělovýchovy
LM2018098
ministerstvo školství, mládeže a tělovýchovy
SP 2021/46
vysoká škola bánská - technická univerzita ostrava
CZ.02.1.01/0.0/0.0/17_049/0008419
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34817713
PubMed Central
PMC8613329
DOI
10.1186/s11671-021-03621-z
PII: 10.1186/s11671-021-03621-z
Knihovny.cz E-zdroje
- Klíčová slova
- Graphitic carbon nitride, Ofloxacin, Photocatalysis, Silver nanoclusters, Synthesis,
- Publikační typ
- časopisecké články MeSH
Graphitic carbon nitride (CN) synthetized by the thermal polycondensation of melamine at 550 °C for 4 h was further exfoliated by heating at 500 °C for 3 h. Silver cations were adsorbed on the exfoliated graphitic carbon nitride (CNE) and then reduced by sodium borohydride forming silver nanoclusters (NCs) with a size of less than 1 nm. The NCs were located on the CNE surface and did not change the CNE properties except for its pore size distribution and thereby specific surface area (SSA). The Ag NCs were able to collect the photoinduced electrons of CNE and thus reduce their recombination with the holes. It was also documented by the increase in the CNE photocatalytic activity in terms of the degradation of antibiotic Ofloxacin. This study demonstrates the ability of CNE to serve as a platform for a simple and fast synthesis of Ag NCs without any stabilizing compounds.
Zobrazit více v PubMed
Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7:17–28. doi: 10.1016/j.jare.2015.02.007. PubMed DOI PMC
Alex AV, Deosarkar TNC, Mukherjee A. An ultra-sensitive and selective AChE based colorimetric detection of malathion using silver nanoparticle-graphene oxide (Ag-GO) nanocomposite. Anal Chim Acta. 2021;1142:73–83. doi: 10.1016/j.aca.2020.10.057. PubMed DOI
Amirjani A, Rahbarimehr E. Recent advances in functionalization of plasmonic nanostructures for optical sensing. Microchim Acta. 2021;188:17. doi: 10.1007/s00604-021-04714-3. PubMed DOI
Behzad F, Naghib SM, Kouhbanani MAJ, Tabatabaei SN, Zare Y, Rhee KY. An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications. J Ind Eng Chem. 2021;94:92–104. doi: 10.1016/j.jiec.2020.12.005. DOI
Bu YY, Chen ZY, Li WB. Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material. Appl Catal B Environ. 2014;144:622–630. doi: 10.1016/j.apcatb.2013.07.066. DOI
Cai J, et al. Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources. Adv Mater. 2019;31:1806314. doi: 10.1002/adma.201806314. PubMed DOI
Crisan CM, Mocan T, Manolea M, Lasca LI, Tabaran FA, Mocan L. Review on silver nanoparticles as a novel class of antibacterial solutions. Appl Sci Basel. 2021 doi: 10.3390/app11031120. DOI
Devthade V, Kamble G, Ghugal SG, Chikhalia KH, Umare SS. Visible light-driven biginelli reaction over mesoporous g-C3N4 Lewis-base. Catal ChemistrySelect. 2018;3:4009–4014. doi: 10.1002/slct.201800591. DOI
Dhakshinamoorthy A, Garcia H. Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem Soc Rev. 2012;41:5262–5284. doi: 10.1039/C2CS35047E. PubMed DOI
Dong F, Wu LW, Sun YJ, Fu M, Wu ZB, Lee SC. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J Mater Chem. 2011;21:15171–15174. doi: 10.1039/c1jm12844b. DOI
Dong G, Zhang Y, Pan Q, Qiu J. A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J Photochem Photobiol C Photochem Rev. 2014;20:33–50. doi: 10.1016/j.jphotochemrev.2014.04.002. DOI
Dong J, Sun T, Li S, Shan N, Chen J, Yan Y, Xu L. 3D ordered macro-/mesoporous carbon supported Ag nanoparticles for efficient electrocatalytic oxygen reduction reaction. J Colloid Interface Sci. 2019;554:177–182. doi: 10.1016/j.jcis.2019.06.087. PubMed DOI
Faisal M, Bouzid H, Harraz FA, Ismail AA, Al-Sayari SA, Al-Assiri MS. Mesoporous Ag/ZnO multilayer films prepared by repeated spin-coating for enhancing its photonic efficiencies. Surf Coat Technol. 2015;263:44–53. doi: 10.1016/j.surfcoat.2014.12.063. DOI
Faisal M, Ismail AA, Harraz FA, Al-Sayari SA, El-Toni AM, Al-Assiri MS. Synthesis of highly dispersed silver doped g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity. Mater Des. 2016;98:223–230. doi: 10.1016/j.matdes.2016.03.019. DOI
Fan Y, Liu S, Yi Y, Rong H, Zhang J. Catalytic nanomaterials toward atomic levels for biomedical applications: from metal clusters to single-atom catalysts. ACS Nano. 2021;15:2005–2037. doi: 10.1021/acsnano.0c06962. PubMed DOI
Ferraria AM, Carapeto AP, Botelho do Rego AM. X-ray photoelectron spectroscopy: Silver salts revisited. Vacuum. 2012;86:1988–1991. doi: 10.1016/j.vacuum.2012.05.031. DOI
Fu Y, Huang T, Zhang L, Zhu J, Wang X. Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach. Nanoscale. 2015;7:13723–13733. doi: 10.1039/C5NR03260A. PubMed DOI
Ge L, Han C, Liu J, Li Y. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4loaded with Ag nanoparticles. Appl Catal A General. 2011;409–410:215–222. doi: 10.1016/j.apcata.2011.10.006. DOI
Goettmann F, Fischer A, Antonietti M, Thomas A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene. Angew Chem Int Edit. 2006;45:4467–4471. doi: 10.1002/anie.200600412. PubMed DOI
Hasija V, et al. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review Applied. Mater Today. 2019;15:494–524. doi: 10.1016/j.apmt.2019.04.003. DOI
He F, Wang ZX, Li YX, Peng SQ, Liu B. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Appl Catal B Environ. 2020;269:21. doi: 10.1016/j.apcatb.2020.118828. DOI
Hu X, Bai J, Li C, Wu Y. Ag-doped 4A-zeolite as an efficient catalyst in the epoxidation of styrene reaction Kinetics. Mech Catal. 2017;120:359–370. doi: 10.1007/s11144-016-1081-y. DOI
Huang Q, Yu JG, Cao SW, Cui C, Cheng B. Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4. Appl Surf Sci. 2015;358:350–355. doi: 10.1016/j.apsusc.2015.07.082. DOI
Chen J, Dong CL, Du YC, Zhao DM, Shen SH. Nanogap engineered plasmon-enhancement in photocatalytic solar hydrogen conversion. Adv Mate Interfaces. 2015 doi: 10.1002/admi.201500280. DOI
Chen ZP, et al. Stabilization of single metal atoms on graphitic carbon nitride. Adv Funct Mater. 2017;27:12. doi: 10.1002/adfm.201605785. DOI
Iqbal M, et al. Search of excellence: convex versus concave noble metal nanostructures for electrocatalytic applications. Adv Mater. 2021 doi: 10.1002/adma.202004554. PubMed DOI
Kang SY, Kim K. Comparative study of dodecanethiol-derivatized silver nanoparticles prepared in one-phase and two-phase systems. Langmuir. 1998;14:226–230. doi: 10.1021/la970696i. DOI
Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arab J Chem. 2019;12:1823–1838. doi: 10.1016/j.arabjc.2014.12.014. DOI
Krylova GV, Gnatyuk YI, Smirnova NP, Eremenko AM, Gun’ko VM. Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol–gel template method. J Sol Gel Sci Technol. 2009;50:216–228. doi: 10.1007/s10971-009-1954-x. DOI
Kvítek L, et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs) J Phys Chem C. 2008;112:5825–5834. doi: 10.1021/jp711616v. DOI
Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today. 2015;10:339–354. doi: 10.1016/j.nantod.2015.04.002. DOI
Liu GQ, Xue MW, Liu QP, Yang H, Zhou YM. Carbon doped honeycomb-like graphitic carbon nitride for photocatalytic hydrogen production. J Colloid Interface Sci. 2019;552:728–734. doi: 10.1016/j.jcis.2019.05.106. PubMed DOI
Liu J. Effect of phosphorus doping on electronic structure and photocatalytic performance of g-C3N4: insights from hybrid density functional calculation. J Alloys Compd. 2016;672:271–276. doi: 10.1016/j.jallcom.2016.02.094. DOI
Liu XL, Ma R, Zhuang L, Hu BW, Chen JR, Liu XY, Wang XK. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit Rev Environ Sci Technol. 10.1080/10643389.2020.1734433
Ma H, Wang J, Zhang X-D. Near-infrared II emissive metal clusters: from atom physics to biomedicine. Coord Chem Rev. 2021;448:214184. doi: 10.1016/j.ccr.2021.214184. DOI
Ma J, Niu H, Gu S. The spatial organization of trace silver atoms on a DNA template. RSC Adv. 2021;11:1153–1163. doi: 10.1039/D0RA08066G. PubMed DOI PMC
Ma Y, Wu X, Zhang G. Core-shell Ag@Pt nanoparticles supported on sepiolite nanofibers for the catalytic reduction of nitrophenols in water: enhanced catalytic performance and DFT study. Appl Catal B Environ. 2017;205:262–270. doi: 10.1016/j.apcatb.2016.12.025. DOI
Meng F, Sun Z. Enhanced photocatalytic activity of silver nanoparticles modified TiO2 thin films prepared by RF magnetron sputtering. Mater Chem Phys. 2009;118:349–353. doi: 10.1016/j.matchemphys.2009.07.068. DOI
Meng Y, Shen J, Chen D, Xin G. Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4 catalyst. Rare Met. 2011;30:276–279. doi: 10.1007/s12598-011-0284-7. DOI
Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31:346–356. doi: 10.1016/j.biotechadv.2013.01.003. PubMed DOI
Mo Z, et al. Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction. Appl Catal B Environ. 2019;256:7. doi: 10.1016/j.apcatb.2019.117854. DOI
Mun SJ, Park SJ. Graphitic carbon nitride materials for photocatalytic hydrogen production via water splitting: a short review. Catalysts. 2019;9:17. doi: 10.3390/catal9100805. DOI
Nadagouda MN, Speth TF, Varma RS. Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res. 2011;44:469–478. doi: 10.1021/ar1001457. PubMed DOI
Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev. 2016;116:7159–7329. doi: 10.1021/acs.chemrev.6b00075. PubMed DOI
Panáček A, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110:16248–16253. doi: 10.1021/jp063826h. PubMed DOI
Panomsuwan G, Chantaramethakul J, Chokradjaroen C, Ishizaki T. In situ solution plasma synthesis of silver nanoparticles supported on nitrogen-doped carbons with enhanced oxygen reduction activity. Mater Lett. 2019;251:135–139. doi: 10.1016/j.matlet.2019.05.052. DOI
Papailias I, Giannakopoulou T, Todorova N, Demotikali D, Vaimakis T, Trapalis C. Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl Surf Sci. 2015;358:278–286. doi: 10.1016/j.apsusc.2015.08.097. DOI
Praus P, Smýkalová A, Foniok K, Matějka V, Kormunda M, Smetana B, Cvejn D. The presence and effect of oxygen in graphitic carbon nitride synthetized in air and nitrogen atmosphere. Appl Surf Sci. 2020;529:147086. doi: 10.1016/j.apsusc.2020.147086. DOI
Praus P, Svoboda L, Dvorský R, Reli M. Nanocomposites of SnO2 and g-C3N4: preparation, characterization and photocatalysis under visible LED irradiation. Ceram Int. 2018;44:3837–3846. doi: 10.1016/j.ceramint.2017.11.170. DOI
Praus P, Svoboda L, Dvorský R, Reli M, Kormunda M, Mančík P. Synthesis and properties of nanocomposites of WO3 and exfoliated g-C3N4. Ceram Int. 2017;43:13581–13591. doi: 10.1016/j.ceramint.2017.07.067. DOI
Praus P, Svoboda L, Ritz M, Troppova I, Sihor M, Koci K. Graphitic carbon nitride: synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater Chem Phys. 2017;193:438–446. doi: 10.1016/j.matchemphys.2017.03.008. DOI
Praus P, Turicová M, Karlíková M, Kvítek L, Dvorský R. Nanocomposite of montmorillonite and silver nanoparticles: characterization and application in catalytic reduction of 4-nitrophenol. Mater Chem Phys. 2013;140:493–498. doi: 10.1016/j.matchemphys.2013.03.059. DOI
Putri LK, Ng BJ, Er CC, Ong WJ, Chang WS, Mohamed AR, Chai SP. Insights on the impact of doping levels in oxygen-doped gC3N4 and its effects on photocatalytic activity. Appl Surf Sci. 2020 doi: 10.1016/j.apsusc.2019.144427. DOI
Rafique M, Sadaf I, Rafique MS, Tahir MB. A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol. 2017;45:1272–1291. doi: 10.1080/21691401.2016.1241792. PubMed DOI
Ren T, Dang Y, Xiao Y, Hu Q, Deng D, Chen J, He P. Depositing Ag nanoparticles on g-C3N4 by facile silver mirror reaction for enhanced photocatalytic hydrogen production. Inorgan Chem Commun. 2021;123:108367. doi: 10.1016/j.inoche.2020.108367. DOI
Restrepo CV, Villa CC. Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: a review. Environ Nanotechnol Monit Manag. 2021;15:100428. doi: 10.1016/j.enmm.2021.100428. DOI
Rycenga M, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev. 2011;111:3669–3712. doi: 10.1021/cr100275d. PubMed DOI PMC
Santillán JMJ, Muñetón Arboleda D, Muraca D, Schinca DC, Scaffardi LB. Highly fluorescent few atoms silver nanoclusters with strong photocatalytic activity synthesized by ultrashort light pulses. Sci Rep. 2020;10:8217. doi: 10.1038/s41598-020-64773-z. PubMed DOI PMC
Shu T, Yang W, Li K, Yan L, Dai Y, Guo H. Design of silver-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity toward methyl orange degradation energy and environment. Focus. 2015;4:107–115. doi: 10.1166/eef.2015.1143. DOI
Svoboda L, et al. Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater Res Bull. 2018;100:322–332. doi: 10.1016/j.materresbull.2017.12.049. DOI
Talapaneni SN, et al. 3D cubic mesoporous C3N4 with tunable pore diameters derived from KIT-6 and their application in base catalyzed Knoevenagel reaction. Catal Today. 2019;324:33–38. doi: 10.1016/j.cattod.2018.08.003. DOI
Talapaneni SN, et al. Nanostructured carbon nitrides for CO2 capture and conversion. Adv Mater. 2020;32:21. doi: 10.1002/adma.201904635. PubMed DOI
Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi (b) 1966;15:627–637. doi: 10.1002/pssb.19660150224. DOI
Thomas A, Fischer A, Goettmann F, Antonietti M, Muller JO, Schlogl R, Carlsson JM. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem. 2008;18:4893–4908. doi: 10.1039/b800274f. DOI
Tran QH, Nguyen VQ, Le A-T. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol. 2013;4:033001. doi: 10.1088/2043-6262/4/3/033001. DOI
Wang A, Wang C, Fu L, Wong-Ng W, Lan Y. Recent advances of graphitic carbon nitride-based structures and applications in catalyst sensing, imaging, and LEDs. Nano-Micro Lett. 2017;9:47. doi: 10.1007/s40820-017-0148-2. PubMed DOI PMC
Wang FL, et al. Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin. Appl Catal B Environ. 2017;207:103–113. doi: 10.1016/j.apcatb.2017.02.024. DOI
Wang K-L, Li Y, Sun T, Mao F, Wu J-K, Xue B. Ultrafine silver nanoparticles deposited on sodium-doped graphitic carbon nitride towards enhanced photocatalytic degradation of dyes and antibiotics under visible light irradiation. Appl Surf Sci. 2019;476:741–748. doi: 10.1016/j.apsusc.2019.01.168. DOI
Wang YQ, Shen SH. Progress and prospects of non-metal doped graphitic carbon nitride for improved photocatalytic performances. Acta Phys-Chim Sin. 2020;36:14. doi: 10.3866/pku.whxb201905080. DOI
Wei F, Li J, Dong C, Bi Y, Han X. Plasmonic Ag decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic water disinfection and organic pollutant removal. Chemosphere. 2020;242:125201. doi: 10.1016/j.chemosphere.2019.125201. PubMed DOI
Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today. 2015;20:595–601. doi: 10.1016/j.drudis.2014.11.014. PubMed DOI PMC
Xu H, et al. An electrochemical thrombin aptasensor based on the use of graphite-like C3N4 modified with silver nanoparticles. Microchim Acta. 2020;187:163. doi: 10.1007/s00604-020-4111-4. PubMed DOI
Xu J, Shen K, Xue B, Li YX, Cao Y. Synthesis of three-dimensional mesostructured graphitic carbon nitride materials and their application as heterogeneous catalysts for Knoevenagel condensation reactions. Catal Lett. 2013;143:600–609. doi: 10.1007/s10562-013-0994-6. DOI
Xu W, et al. Visible light photocatalytic degradation of tetracycline with porous Ag/graphite carbon nitride plasmonic composite: degradation pathways and mechanism. J Colloid Interface Sci. 2020;574:110–121. doi: 10.1016/j.jcis.2020.04.038. PubMed DOI
Yang J, Pang R, Song D, Li M-B. Tailoring silver nanoclusters via doping: advances and opportunities. Nanosc Adv. 2021;3:2411–2422. doi: 10.1039/D1NA00077B. PubMed DOI PMC
Yang Y, et al. Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst. Appl Catal B. 2013;142–143:828–837. doi: 10.1016/j.apcatb.2013.06.026. DOI
Yaqoob AA, Umar K, Ibrahim MNM. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications—a review. Appl Nanosci. 2020;10:1369–1378. doi: 10.1007/s13204-020-01318-w. DOI
Ye M, et al. Silver nanoparticles/graphitic carbon nitride nanosheets for improved visible-light-driven photocatalytic performance. J Photochem Photobiol A. 2018;351:145–153. doi: 10.1016/j.jphotochem.2017.10.016. DOI
Zhang Y, Pan Q, Chai G, Liang M, Dong G, Zhang Q, Qiu J. Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci Rep. 2013;3:1943. doi: 10.1038/srep01943. PubMed DOI PMC
Zhou YJ, Zhang LX, Huang WM, Kong QL, Fan XQ, Wang M, Shi JL. N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H-2 evolution under visible light. Carbon. 2016;99:111–117. doi: 10.1016/j.carbon.2015.12.008. DOI
Zhou Z, Zhang Y, Shen Y, Liu S, Zhang Y. Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chem Soc Rev. 2018;47:2298–2321. doi: 10.1039/C7CS00840F. PubMed DOI
Zhu AH, Qiu BC, Du MM, Ji JH, Nasir M, Xing MY, Zhang JL. Dopant-induced edge and basal plane catalytic sites on ultrathin C3N4 nanosheets for photocatalytic water reduction. ACS Sustain Chem Eng. 2020;8:7497–7502. doi: 10.1021/acssuschemeng.0c02122. DOI