Efficacy of the Applied Natural Enemies on the Survival of Colorado Potato Beetle Adults
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910270
National Agency for Agricultural Research
60077344
Biology Centre
ITMS 313011W112
Operational Program Integrated Infrastructure
PubMed
34821830
PubMed Central
PMC8625171
DOI
10.3390/insects12111030
PII: insects12111030
Knihovny.cz E-zdroje
- Klíčová slova
- Beauveria, Colorado potato beetle, Steinernema, entomopathogenic fungi, entomopathogenic nematodes, field application,
- Publikační typ
- časopisecké články MeSH
Colorado potato beetle Leptinotarsa decemlineata is among the most destructive pests of potatoes quickly developing resistance to traditional insecticides. In the present study, we tested the effect of various species and strains of entomopathogenic nematodes on CPB adults, and subsequently, the most effective nematodes were applied alone and in combination with entomopathogenic fungus B. bassiana in pots with potato plants and in the field and their effect on the number of emerging adults was evaluated. In the experimental infections, both the nematode invasion and pathogenicity were variable, and, in several strains, the mortality reached 100%. In pot experiments, soil application of nematodes S. carpocapsae 1343 and S. feltiae Jakub and fungus significantly decreased numbers of emerging CPB adults, while, after the application on leaves, only fungal treatment was effective. The field application of fungus B. bassiana significantly decreased the number of emerging CPB adults in comparison to control sites by ca. 30% while the effect of nematodes and the nematodes-fungus combination was not significant. In conclusion, we demonstrate the necessity of thorough bioassays to select the most effective nematode strains. Entomopathogenic nematodes have the potential to effectively decrease the emergence of CPB adults, but further research is needed to improve the effectiveness in the field.
Zobrazit více v PubMed
James C. Global Status of Commercialized Biotech/GM Crops, 2011. Volume 44 ISAAA; Ithaca, NY, USA: 2011.
Grafius E. Economic Impact of Insecticide Resistance in the Colorado Potato Beetle (Coleoptera: Chrysomelidae) on the Michigan Potato Industry. J. Econ. Entomol. 1997;90:1144–1151. doi: 10.1093/jee/90.5.1144. DOI
Cutler G.C., Tolman J.H., Scott-Dupree C.D., Harris C.R. Resistance Potential of Colorado Potato Beetle (C4) to Novaluron. J. Econ. Entomol. 2005;98:1685–1693. doi: 10.1093/jee/98.5.1685. PubMed DOI
Alyokhin A., Baker M., Mota-Sanchez D., Dively G., Grafius E. Colorado Potato Beetle Resistance to Insecticides. Am. J. Potato Res. 2008;85:395–413. doi: 10.1007/s12230-008-9052-0. DOI
Poinar G.O. Nematodes for Biological Control of Insects. CRC Press; Boca Raton, FL, USA: 2018.
Laumond C., Mauléon H., Kermarrec A. Données Nouvelles Sur Le Spectre d’hôtes et Le Parasitisme Du Nématode Entomophage Neoaplectana carpocapsae. Entomophaga. 1979;24:13–27. doi: 10.1007/BF02377505. DOI
Woodring J.L., Kaya H.K. Steinernematid and Heterorhabditid Nematodes: A Handbook of Biology and Techniques. South. Coop. Ser. Bull. (USA) 1988;331:30.
Bathon H. Impact of Entomopathogenic Nematodes on Non-Target Hosts. Biocontrol Sci. Technol. 1996;6:421–434. doi: 10.1080/09583159631398. DOI
Ehlers R.-U., Hokkanen H. Insect Biocontrol with Non-Endemic Entomopathogenic Nematodes (Steinernema and Heterorhabditis spp.): Conclusions and Recommendations of a Combined OECD and COST Workshop on Scientific and Regulatory Policy Issues. Biocontrol Sci. Technol. 1996;6:295–302. doi: 10.1080/09583159631280. DOI
Půža V. Principles of Plant-Microbe Interactions. Springer; Berlin/Heidelberg, Germany: 2015. Control of insect pests by entomopathogenic nematodes; pp. 175–183.
Inglis D.M., Goettel M.S., Butt T.M., Strasser H. Fungi as Biocontrol Agents: Progress Problems and Potential. CABI; Wallingford, UK: 2001. Use of hyphomycetous fungi for managing insect pests; p. 23.
Jackson M.A., Dunlap C.A., Jaronski S.T. Ecological Considerations in Producing and Formulating Fungal Entomopathogens for Use in Insect Biocontrol. BioControl. 2010;55:129–145. doi: 10.1007/s10526-009-9240-y. DOI
de Faria M.R., Wraight S.P. Mycoinsecticides and Mycoacaricides: A Comprehensive List with Worldwide Coverage and International Classification of Formulation Types. Biol. Control. 2007;43:237–256. doi: 10.1016/j.biocontrol.2007.08.001. DOI
Cantelo W.W., Nickle W.R. Susceptibility of Prepupae of the Colorado Potato Beetle (Coleoptera: Chrysomelidae) to Entomopathogenic Nematodes (Rhabditida: Steinernematidae, Heterorhabditidae) J. Entomol. Sci. 1992;27:37–43. doi: 10.18474/0749-8004-27.1.37. DOI
Trdan S., Vidrih M., Andjus L., Laznik Ž. Activity of Four Entomopathogenic Nematode Species against Different Developmental Stages of Colorado Potato Beetle, Leptinotarsa decemlineata (Coleoptera, Chrysomelidae) Helminthologia. 2009;46:14–20. doi: 10.2478/s11687-009-0003-1. DOI
Armer C.A., Berry R.E., Reed G.L., Jepsen S.J. Colorado Potato Beetle Control by Application of the Entomopathogenic Nematode Heterorhabditis marelata and Potato Plant Alkaloid Manipulation. Entomol. Exp. Appl. 2004;111:47–58. doi: 10.1111/j.0013-8703.2004.00152.x. DOI
Čačija M., Bažok R., Kolenc M., Bujas T., Drmić Z., Kadoić Balaško M. Field Efficacy of Steinernema sp. (Rhabditida: Steinernematidae) on the Colorado Potato Beetle Overwintering Generation. Plants. 2021;10:1464. doi: 10.3390/plants10071464. PubMed DOI PMC
Guetsky R., Shtienberg D., Elad Y., Dinoor A. Combining Biocontrol Agents to Reduce the Variability of Biological Control. Phytopathology. 2001;91:621–627. doi: 10.1094/PHYTO.2001.91.7.621. PubMed DOI
Otsuki H., Yano S. Functionally Different Predators Break down Antipredator Defenses of Spider Mites. Entomol. Exp. Appl. 2014;151:27–33. doi: 10.1111/eea.12164. DOI
Hussein H.M., Skoková Habuštová O., Půža V., Zemek R. Laboratory Evaluation of Isaria fumosorosea CCM 8367 and Steinernema feltiae Ustinov against Immature Stages of the Colorado Potato Beetle. PLoS ONE. 2016;11:e0152399. doi: 10.1371/journal.pone.0152399. PubMed DOI PMC
Özdemir E., İnak E., Evlice E., Yüksel E., Delialioğlu R.A., Susurluk I.A. Effects of Insecticides and Synergistic Chemicals on the Efficacy of the Entomopathogenic Nematode Steinernema feltiae (Rhabditida: Steinernematidae) against Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) Crop Prot. 2021;144:105605. doi: 10.1016/j.cropro.2021.105605. DOI
Ansari M., Tirry L., Moens M. Interaction between Metarhizium anisopliae CLO 53 and Entomopathogenic Nematodes for the Control of Hoplia philanthus. Biol. Control. 2004;31:172–180. doi: 10.1016/j.biocontrol.2004.04.002. DOI
Tarasco E., Santiago Alvarez C., Triggiani O., Quesada Moraga E. Laboratory Studies on the Competition for Insect Haemocoel between Beauveria bassiana and Steinernema ichnusae Recovered in the Same Ecological Niche. Biocontrol Sci. Technol. 2011;21:693–704. doi: 10.1080/09583157.2011.570428. DOI
Bedding R., Akhurst R. A Simple Technique for the Detection of Insect Parasitic Rhabditid Nematodes in Soil. Nematology. 1975;21:109–110. doi: 10.1163/187529275X00419. DOI
Kaya H.K., Stock S.P. Manual of Techniques in Insect Pathology. Elsevier; Amsterdam, The Netherlands: 1997. Techniques in insect nematology; pp. 281–324.
Stock S.P., Goodrich-Blair H. Nematode Parasites, Pathogens and Associates of Insects and Invertebrates of Economic Importance. Man. Tech. Invertebr. Pathol. 2012;2:375–425.
Dunn M.D., Belur P.D., Malan A.P. In Vitro Liquid Culture and Optimization of Steinernema jeffreyense Using Shake Flasks. BioControl. 2020;65:223–233. doi: 10.1007/s10526-019-09977-7. DOI
Skalický A., Bohatá A., Šimková J., Osborne L.S., Landa Z. Selection of Indigenous Isolates of Entomopathogenic Soil Fungus Metarhizium Anisopliae under Laboratory Conditions. Folia Microbiol. 2014;59:269–276. doi: 10.1007/s12223-013-0293-z. PubMed DOI
Mráček Z., Bečvár S., Kindlmann P., Webster J. Infectivity and Specificity of Canadian and Czech Isolates of Steinernema kraussei (Steiner, 1923) to Some Insect Pests at Low Temperatures in the Laboratory. Nematologica. 1998;44:437–448.
Matuska-Łyżwa J. Ecological and Morphological Characteristics of Steinernema kraussei (Rhabditida: Steinernematidae): Comparison of Nematodes Isolated from the Natural Environments and Originated from the Commercial Pesticide. Ecol. Quest. 2014;19:51–55. doi: 10.12775/EQ.2014.005. DOI
Campos-Herrera R., Gomez-Ros J.M., Escuer M., Cuadra L., Barrios L., Gutiérrez C. Diversity, Occurrence, and Life Characteristics of Natural Entomopathogenic Nematode Populations from La Rioja (Northern Spain) under Different Agricultural Management and Their Relationships with Soil Factors. Soil Biol. Biochem. 2008;40:1474–1484. doi: 10.1016/j.soilbio.2008.01.002. DOI
Půža V., Nermuť J. Nematode Pathogenesis of Insects and Other Pests. Springer; Berlin/Heidelberg, Germany: 2015. Entomopathogenic nematodes in the Czech Republic: Diversity, occurrence and habitat preferences; pp. 421–429.
Berry R., Liu J., Reed G. Comparison of Endemic and Exotic Entomopathogenic Nematode Species for Control of Colorado Potato Beetle (Coleoptera: Chrysomelidae) J. Econ. Entomol. 1997;90:1528–1533. doi: 10.1093/jee/90.6.1528. PubMed DOI
Bedding R., Molyneux A., Akhurst R. Heterorhabditis spp., Neoaplectana spp., and Steinernema kraussei: Interspecific and Intraspecific Differences in Infectivity for Insects. Exp. Parasitol. 1983;55:249–257. doi: 10.1016/0014-4894(83)90019-X. PubMed DOI
Thurston G.S., Yule W., Dunphy G. Explanations for the Low Susceptibility of Leptinotarsa decemlineata to Steinernema carpocapsae. Biol. Control. 1994;4:53–58. doi: 10.1006/bcon.1994.1010. DOI
Li X.-Y., Cowles R., Cowles E., Gaugler R., Cox-Foster D. Relationship between the Successful Infection by Entomopathogenic Nematodes and the Host Immune Response. Int. J. Parasitol. 2007;37:365–374. doi: 10.1016/j.ijpara.2006.08.009. PubMed DOI
Stewart J.G., Boiteau G., Kimpinski J. Management of Late-Season Adults of the Colorado Potato Beetle (Coleoptera: Chrysomelidae) with Entomopathogenic Nematodes. Can. Entomol. 1998;130:509–514. doi: 10.4039/Ent130509-4. DOI
Wright R.J., Agudelo-Silva F., Georgis R. Soil Applications of Steinernematid and Heterorhabditid Nematodes for Control of Colorado Potato Beetles, Leptinotarsa Decemlineata (Say) J. Nematol. 1987;19:201. PubMed PMC
Hummadi E.H., Dearden A., Generalovic T., Clunie B., Harrott A., Cetin Y., Demirbek M., Khoja S., Eastwood D., Dudley E. Volatile Organic Compounds of Metarhizium brunneum Influence the Efficacy of Entomopathogenic Nematodes in Insect Control. Biol. Control. 2021;155:104527. doi: 10.1016/j.biocontrol.2020.104527. PubMed DOI PMC
Shapiro-Ilan D.I., Jackson M., Reilly C.C., Hotchkiss M.W. Effects of Combining an Entomopathogenic Fungi or Bacterium with Entomopathogenic Nematodes on Mortality of Curculio caryae (Coleoptera: Curculionidae) Biol. Control. 2004;30:119–126. doi: 10.1016/j.biocontrol.2003.09.014. DOI
Acevedo J.P.M., Samuels R.I., Machado I.R., Dolinski C. Interactions between Isolates of the Entomopathogenic Fungus Metarhizium anisopliae and the Entomopathogenic Nematode Heterorhabditis bacteriophora JPM4 during Infection of the Sugar Cane Borer Diatraea saccharalis (Lepidoptera: Pyralidae) J. Invertebr. Pathol. 2007;96:187–192. doi: 10.1016/j.jip.2007.04.003. PubMed DOI
Tobias N.J., Shi Y.-M., Bode H.B. Refining the Natural Product Repertoire in Entomopathogenic Bacteria. Trends Microbiol. 2018;26:833–840. doi: 10.1016/j.tim.2018.04.007. PubMed DOI