Lectin Activity in Commonly Consumed Plant-Based Foods: Calling for Method Harmonization and Risk Assessment
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
34829077
PubMed Central
PMC8618113
DOI
10.3390/foods10112796
PII: foods10112796
Knihovny.cz E-resources
- Keywords
- active lectins, disease, hemagglutination, lectins, legumes, plant-based foods, risk assessment,
- Publication type
- Journal Article MeSH
Lectins are ubiquitous proteins characterized through their ability to bind different types of carbohydrates. It is well known that active lectins from insufficiently prepared legumes can cause adverse human health effects. The objective of this study was to determine the activity of lectins in samples across plant families representing commercially available edible plants, and the feasibility of inactivating lectins through soaking and boiling. Lectins were extracted from the plant families Adoxaceae, Amaranthaceae, Cannabaceae, Fabaceae, Gramineae, Lamiaceae, Linaceae, Pedaliaceae, and Solanaceae. A hemagglutination assay based on non-treated or trypsin treated rabbit erythrocytes was used to measure the lectin activity. The results showed the highest lectin activity in species from the Fabaceae family and demonstrated that soaking and boiling have an effect on the levels of active lectins. This is the first large study that combines lectin activity obtained from two different assays with raw and processed edible plants. In addition, we examined the current risk assessment, and regulations necessary for an adequate official reporting of results. We encourage the scientific community to further explore this field and agree on harmonized methods for analysis and interpretation, and hope that our methodology can initiate this development.
See more in PubMed
Lannoo N., Van Damme E.J.M. Lectin domains at the frontiers of plant defense. Front. Plant Sci. 2014;5:397. doi: 10.3389/fpls.2014.00397. PubMed DOI PMC
Nöthlings U., Schulze M.B., Weikert C., Boeing H., van der Schouw Y., Bamia C., Benetou V., Lagiou P., Krogh V., Beulens J.W.J., et al. Intake of Vegetables, Legumes, and Fruit, and Risk for All-Cause, Cardiovascular, and Cancer Mortality in a European Diabetic Population. J. Nutr. 2008;138:775–781. doi: 10.1093/jn/138.4.775. PubMed DOI
Baldwin A., Weighell W., Guzman R.P., Zahradka P., Taylor C.G. Feasibility and Tolerability of Daily Pulse Consumption in Individuals with Peripheral Artery Disease. Can. J. Diet. Pract. Res. 2017;78:187–191. doi: 10.3148/cjdpr-2017-015. PubMed DOI
Blackberry I., Wahlqvist M.L., Kouris-Blazos A., Steen B., Lukito W., Horie Y., Horie K. Legumes: The most important dietary predictor of survival in older people of different ethnicities. Asia Pac. J. Clin. Nutr. 2004;13:217–220. PubMed
Figueira N., Curtain F., Beck E., Grafenauer S. Consumer Understanding and Culinary Use of Legumes in Australia. Nutrients. 2019;11:1575. doi: 10.3390/nu11071575. PubMed DOI PMC
Pasqualone A., Costantini M., Coldea T.E., Summo C. Use of Legumes in Extrusion Cooking: A Review. Foods. 2020;9:958. doi: 10.3390/foods9070958. PubMed DOI PMC
Boye J., Zare F., Pletch A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010;43:414–431. doi: 10.1016/j.foodres.2009.09.003. DOI
Peumans W., Van Damme E. Prevalence, biological activity and genetic manipulation of lectins in foods. Trends Food Sci. Technol. 1996;7:132–138. doi: 10.1016/0924-2244(96)10015-7. DOI
McPherson L.L. The Effect of the Consumption of Red Kidney Beans (Phaseolus vulgaris) on the Growth of Rats and the Implications for Human Populations. J. R. Soc. Health. 1990;110:222–226. doi: 10.1177/146642409011000610. PubMed DOI
Sun Y., Liu J., Huang Y., Li M., Lu J., Jin N., He Y., Fan B. Phytohemagglutinin content in fresh kidney bean in China. Int. J. Food Prop. 2019;22:405–413. doi: 10.1080/10942912.2019.1590399. DOI
Gupta N., Bisen P.S., Bhagyawant S.S. Chickpea Lectin Inhibits Human Breast Cancer Cell Proliferation and Induces Apoptosis through Cell Cycle Arrest. Protein Pept. Lett. 2018;25:492–499. doi: 10.2174/0929866525666180406142900. PubMed DOI
Damme E.J.M.V., Peumans W.J., Barre A., Rougé P. Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plant Sci. 1998;17:575–692. doi: 10.1080/07352689891304276. DOI
Van Damme E.J., Roy S., Barre A., Rouge P., Van Leuven F., Peumans W.J. The major elderberry (Sambucus nigra) fruit protein is a lectin derived from a truncated type 2 ribosome-inactivating protein. Plant J. 1997;12:1251–1260. doi: 10.1046/j.1365-313x.1997.12061251.x. PubMed DOI
Tripathi A., Thakur N., Katoch R. Studies on Lectins from Major Vigna species. Indian J. Agric. Biochem. 2018;31:93. doi: 10.5958/0974-4479.2018.00016.3. DOI
Pusztai A., Ewen S., Grant G., Peumans W., van Damme E., Rubio L., Bardocz S. Relationship between Survival and Binding of Plant Lectins during Small Intestinal Passage and Their Effectiveness as Growth Factors. Digestion. 1990;46((Suppl. 2)):308–316. doi: 10.1159/000200402. PubMed DOI
Pusztai A. Dietary lectins are metabolic signals for the gut and modulate immune and hormone functions. Eur. J. Clin. Nutr. 1993;47:691–699. PubMed
Banwell J.G., Howard R., Kabir I., Costerton J.W. Bacterial overgrowth by indigenous microflora in the phytohemagglutinin-fed rat. Can. J. Microbiol. 1988;34:1009–1013. doi: 10.1139/m88-177. PubMed DOI
King T.P., Pusztai A., Clarke E.M.W. Immunocytochemical localization of ingested kidney bean (Phaseolus vulgaris) lectins in rat gut. J. Mol. Histol. 1980;12:201–208. doi: 10.1007/BF01024550. PubMed DOI
He S., Simpson B.K., Sun H., Ngadi M.O., Ma Y., Huang T. Phaseolus vulgaris lectins: A systematic review of characteristics and health implications. Crit. Rev. Food Sci. Nutr. 2017;58:70–83. doi: 10.1080/10408398.2015.1096234. PubMed DOI
Rodhouse J.C., Haugh C.A., Roberts D., Gilbert R.J. Red kidney bean poisoning in the UK: An analysis of 50 suspected incidents between 1976 and 1989. Epidemiol. Infect. 1990;105:485–491. doi: 10.1017/S095026880004810X. PubMed DOI PMC
Vichova P., Jahodar L. Plant poisonings in children in the Czech Republic, 1996−2001. Hum. Exp. Toxicol. 2003;22:467–472. doi: 10.1191/0960327103ht387oa. PubMed DOI
Fuchs J., Rauber-Lüthy C., Kupferschmidt H., Kupper J., Kullak-Ublick G.-A., Ceschi A. Acute plant poisoning: Analysis of clinical features and circumstances of exposure. Clin. Toxicol. 2011;49:671–680. doi: 10.3109/15563650.2011.597034. PubMed DOI
Ogawa H., Date K. The “White Kidney Bean Incident” in Japan. Methods Mol. Biol. 2014;1200:39–45. doi: 10.1007/978-1-4939-1292-6_3. PubMed DOI
Pilegaard K., Olesen P.T. The Danish Technical University; Lyngby, Denmark: 2013. Forespørgsel om Mulig Forgiftning Forårsaget af "Gourmetbønner"/Snitbønner. J. nr 13/01534.
de la Barca A., Vázquez-Moreno L., Robles-Burgueño M. Active soybean lectin in foods: Isolation and quantitation. Food Chem. 1991;39:321–327. doi: 10.1016/0308-8146(91)90149-I. DOI
Rizzi C., Galeoto L., Zoccatelli G., Vincenzi S., Chignola R., Peruffo A.D. Active soybean lectin in foods: Quantitative determination by ELISA using immobilised asialofetuin. Food Res. Int. 2003;36:815–821. doi: 10.1016/S0963-9969(03)00076-0. DOI
Hwang K.M., Murphree S.A., Sartorelli A.C. A quantitative spectrophotometric method to measure plant lectin-induced cell agglutination. Cancer Res. 1974;34:3396–3402. PubMed
Zubčević N., Fočak M., Suljević D. Highly specific hemagglutination activity of plant lectins in specific species: Case of Fabaceae and Solanaceae. Bulg. J. Agric. Sci. 2018;24:391–397.
Bhagyawant S.S., Gautam A., Chaturvedi S.K., Shrivastava N. Hemagglutinating activity of chickpea extracts for lectin. Int. J. Pharm. Phytopharm. Res. 2015;5:1–6.
Adamová L., Malinovská L., Wimmerová M. New sensitive detection method for lectin hemagglutination using microscopy. Microsc. Res. Tech. 2014;77:841–849. doi: 10.1002/jemt.22407. PubMed DOI
WHO. [(accessed on 30 September 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/natural-toxins-in-food.
FDA Bad Bug Book. Handbook of Food Borne Pathogenic Microorganisms and Natural Toxins, 2nd edition; USA, 2012; Phytohaemagglutinin (Kidney Bean Lectin) Available online: https://www.fda.gov/media/83271/download.
DVFA. [(accessed on 3 September 2021)]. Available online: https://www.foedevarestyrelsen.dk/Foedevarer/kend_kemien/Sider/Specifikke-foedevarer.aspx.
ILDIS International Legume Database & Information Service. [(accessed on 3 September 2021)]. Available online: http://www.ildis.org/LegumeWeb/
Plants of de World Online. [(accessed on 10 May 2020)]. Available online: http://www.plantsoftheworldonline.org.
LIS Legume Information System. [(accessed on 3 September 2021)]. Available online: https://legumeinfo.org/organism/Phaseolus/coccineus.
Jones D.B. Factors for Converting Percentages of Nitrogen in Foods and Feeds into Percentages of Protein. U.S. Department of Agriculture; Washington, DC, USA: 1941. p. 183.
Mariotti F., Tomé D., Mirand P.P. Converting nitrogen into protein—Beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 2008;48:177–184. doi: 10.1080/10408390701279749. PubMed DOI
Grant G., More L.J., McKenzie N.H., Stewart J.C., Pusztai A. A survey of the nutritional and haemagglutination properties of legume seeds generally available in the UK. Br. J. Nutr. 1983;50:207–214. doi: 10.1079/BJN19830090. PubMed DOI
Nachbar M.S., Oppenheim J. Lectins in the United States diet: A survey of lectins in commonly consumed foods and a review of the literature. Am. J. Clin. Nutr. 1980;33:2338–2345. doi: 10.1093/ajcn/33.11.2338. PubMed DOI
Jiménez P., Cabrero P., Cordoba-Diaz D., Cordoba-Diaz M., Garrosa M., Girbés T. Lectin Digestibility and Stability of Elderberry Antioxidants to Heat Treatment In Vitro. Molecules. 2017;22:95. doi: 10.3390/molecules22010095. PubMed DOI PMC
Pompeu D.G., Mattioli M.A., Ribeiro R., Gonçalves D.B., Magalhães J., Marangoni S., Da Silva J.A., Granjeiro P.A. Purification, partial characterization and antimicrobial activity of Lectin from Chenopodium Quinoa seeds. Food Sci. Technol. 2015;35:696–703. doi: 10.1590/1678-457X.6823. DOI
Ayyagari R., Rao B.N., Roy D. Lectins, trypsin inhibitors, BOAA and tannins in legumes and cereals and the effects of processing. Food Chem. 1989;34:229–238. doi: 10.1016/0308-8146(89)90143-X. DOI
Contreras S., Tagle M.A. Toxic factors in Chilean legumes III. Hemagglutinating activity. Arch. Latinoam. Nutr. 1974;24:191–199.
Roy F., Boye J., Simpson B. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Res. Int. 2010;43:432–442. doi: 10.1016/j.foodres.2009.09.002. DOI
De Mejía E.G., Prisecaru V.I. Lectins as Bioactive Plant Proteins: A Potential in Cancer Treatment. Crit. Rev. Food Sci. Nutr. 2005;45:425–445. doi: 10.1080/10408390591034445. PubMed DOI
Ebere U., Godswill A.C. Effect of some processing methods on hemagglutinin activity of lectin extracts from selected grains (cereals and legumes) J. Adv. Acad. Res. 2016;2:24–59.
Bender A.E., Reaidi G.B. Toxicity of Kidney Beans (Phaseolus vulgaris) With Particular Reference to Lectins. J. Plant Foods. 1982;4:15–22. doi: 10.1080/0142968X.1982.11904243. DOI
Norberg S. The Food Safety Facts on Slow Cooking. [(accessed on 3 September 2021)]. Available online: https://www.safefood.net/Blog/January-2017/The-food-safety-facts-on-slow-cooking.
Pusztai A., Palmer R. Nutritional evaluation of kidney beans (Phaseolus vulgaris): The toxic principle. J. Sci. Food Agric. 1977;28:620–623. doi: 10.1002/jsfa.2740280707. PubMed DOI