A Possibility to Use Selected Crop Post-Extraction Wastes to Improve the Composition of Cultivated Mushroom Pleurotus citrinopileatus

. 2021 Oct 22 ; 7 (11) : . [epub] 20211022

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34829183

Grantová podpora
005/RID/2018/19 Ministry of Science and Higher Education programme "Regional Initiative of Excellence" in years 2019-2022

A cultivated mushroom species, Pleurotus citrinopileatus, is becoming increasingly popular thanks to its attractive colour and medicinal properties. In this study, P. citrinopileatus was grown in a cultivation medium enriched with wheat bran (WB), thymus post-extraction waste (TPEW) and pumpkin post-extraction waste (PPEW) products. The study showed that the post-extraction wastes are a crucial factor determining the accumulation of minerals, the content/profile of low-molecular-weight organic acids (LMWOAs) and phenolic compounds in fruit bodies, thereby increasing their nutritional value. The use of the waste materials significantly increased LMWOAs contents. The sum of LMWOAs under all cultivation mediums increased, especially quinic, malic and citric acids under the 20% PPEW, 25 and 50% TPEW addition. Total phenolic content, phenolic content, as well as the composition and scavenging effect on DPPH radicals, were strongly dependent on the used substrate. The control variant was poor in phenolic compounds, while the supplementation increased the contents and diversity of these metabolites. In the control, only four phenolic compounds were quantified (chlorogenic, gallic, syringic and vanillic acids), while in the supplemented substrates up to 14 different phenolic compounds (caffeic, chlorogenic, p-coumaric, 2,5-dihydroxybenzoic acid, ferulic, gallic, protocatechuic, salicylic, sinapic, syringic, trans-cinnamic and vanillic acids, catechin and rutin).

Zobrazit více v PubMed

Ohira I. A revision of the taxonomic status of Pleurotus citrinopileatus. Rep. Tottori Mycol. Inst. 1990;28:142–150.

FAOSAT. 2016. [(accessed on 17 July 2020)]. Available online: http://faostat3.fao.org/browse/Q/QC/E.

United States Department of Agriculture (USDA) Mushrooms National Agricultural Statistics Service (NASS) Agricultural Statistics Board United States Department of Agriculture (USDA) [(accessed on 15 July 2020)];2017 Available online: https://www.nass.usda.gov/

Zhang J., Wang G., Li H., Zhuang C., Mizuno T., Ito H., Suzuki C., Okamoto H., Li J. Antitumor polysaccharides from a Chinese mushroom, “yuhuangmo”, the fruit body of Pleurotus citrinopileatus. Biosci. Biotechnol. Biochem. 1994;58:1195–1201. doi: 10.1271/bbb.58.1195. PubMed DOI

Ziombra M., Czerwińska A. Boczniaki mniej znane: Boczniak cytrynowy (Pleurotus citrinopileatus) Biul. Prod. Pieczarek Pieczarki. 2006;34:64–67.

Cohen R., Persky L., Hadar Y. Biotechnological applications and potential of wood degrading mushrooms of the genus Pleurotus. Appl. Microbiol. Biotechnol. 2002;58:582–594. doi: 10.1007/s00253-002-0930-y. PubMed DOI

Ponmurugan P., Sekhar Y.N., Sreesakthi T. Effect of various substrates on the growth and quality of mushrooms. Pak. J. Biol. Sci. 2007;10:171–173. doi: 10.3923/pjbs.2007.171.173. PubMed DOI

Alam N., Yoon K., Lee K., Kim H., Shin P., Cheong J., Yoo Y., Shim M., Lee M., Lee T. Assessment of antioxidant and phenolic compound concentrations as well as xanthine oxidase and tyrosinase inhibitory properties of different extracts of Pleurotus citrinopileatus fruit bodies. Mycobiology. 2011;39:12–19. doi: 10.4489/MYCO.2011.39.1.012. PubMed DOI PMC

Naik V., Sharma D., Kumar P., Yadav R. Efficacy of ligno-cellulolytic fungi on recycling sericultural waste. Acta Biol. Indica. 2012;1:47–50.

Pandey V., Singh M., Srivastava A., Vishwakarma S., Takshak S. Biodegradation of sugarcane bagasse by Pleurotus citrinopileatus. Cell Mol. Biol. 2012;58:8–14. doi: 10.1170/T914. PubMed DOI

Owaid M.N., Al-Saeedi S.S.S., Abed I.A. Recycling of date-palm fiber to produce Pleurotus cornucopiae var. citrinopileatus mushroom. Int. J. Environ. 2016;5:56–65. doi: 10.3126/ije.v5i4.16393. DOI

Joshi S., Borkar P.G., Saykar A.D., Pawar S.V. Assessment of biological efficiency of Pleurotus Sajor-caju, P. florida, P. citrinopileatus and Hypsizygus. Int. J. Chem. Stud. 2018;6:2299–2301.

Chaudhary L.C., Singh R., Kamra D.N. Biodelignification of sugarcane bagasse by Pleurotus florida and Pleurotus cornucopiae. Indian J. Microbiol. 1994;34:55–57.

Ćilerdžić J., Galić M., Vukojević J., Brčeski I., Stajić M. Potential of selected fungal species to degrade wheat straw, the most abundant plant raw material in Europe. BMC Plant Biol. 2017;17:249. doi: 10.1186/s12870-017-1196-y. PubMed DOI PMC

Krishna B., Shanmugasundaram K., Narendhirakannan R.T. Mycelial growth characteristics of Pleurotus citrinopileatus and Pleurotus platypus in culture media variants. Indian J. Agric. Biochem. 2019;32:200–205. doi: 10.5958/0974-4479.2019.00029.7. DOI

Siwulski M., Sobieralski K. Uprawa Grzybów Jadalnych i Leczniczych w Warunkach Naturalnych. Kurpisz Poznań; Poznań, Poland: 2004.

Stajic M., Milenkovic I., Brceksi I., Vukojevic J., Duletic S. Mycelial growth of edible and medicinal oyster mushroom Pleurotus ostreatus (Jacq.Fr.Kumm) on selenium enriched media. Int. J. Med. Mushrooms. 2002;4:241–244. doi: 10.1615/IntJMedMushr.v4.i3.70. DOI

Parmar R., Kumar D. Study of chemical composition in wild edible mushroom Pleurotus cornucopiae (Paulet) from Himachal Pradesh, India by using fourier transforms infrared spectrometry (FTIR), gas chromatography-mass spectrometry (GCMS) and x-ray fluorescence (XRF) Biol. Forum. 2015;7:1057.

Tan Y.S., Baskaran A., Nallathamby N., Chua K.H., Kuppusamy U.R., Sabaratnam V. Influence of customized cooking methods on the phenolic contents and antioxidant activities of selected species of oyster mushrooms (Pleurotus spp.) J. Food Sci. Technol. 2015;52:3058–3064. doi: 10.1007/s13197-014-1332-8. PubMed DOI PMC

Siwulski M., Mleczek M., Rzymski P., Budka A., Jasińska A., Niedzielski P., Kalač P., Gasecka M., Budzyńska S., Mikołajczak P. Screening the multi-element content of Pleurotus mushroom species using inductively coupled plasma optical emission spectrometer (ICP-OES) Food Anal. Methods. 2017;10:487–496. doi: 10.1007/s12161-016-0608-1. DOI

Peraza J.G., Grycz A., Mederos M.A.P., Galdón B.R., Rodríguez E.M.R. Total phenolic compounds and antioxidant activity in Pleurotus spp. grown on commercial and wild substrates. Glob. J. Food Sci. Nutr. 2019;4:1–6. doi: 10.39127/GJFSN:1000109. DOI

Lee Y.L., Huang G.W., Liang Z.C., Mau J.L. Antioxidant properties of three extract from Pleurotus citrinopileatus. LWT Food Sci. Technol. 2007;40:823–833. doi: 10.1016/j.lwt.2006.04.002. DOI

Wang Y., Xu B. Distribution of antioxidant activities and total phenolic contents in acetone, ethanol, water and hot water extracts from 20 edible mushrooms via sequential extraction. Austin J. Nutr. Food Sci. 2014;2:5.

Khatun S., Islam A., Cakilcioglu U., Guler P., Chatterjee N.C. Nutritional qualities and antioxidant activity of three edible oyster mushrooms (Pleurotus spp.) NJAS Wagening. J. Life Sci. 2015;72:1–5. doi: 10.1016/j.njas.2012.03.003. DOI

Rodrigues D.M.F.C., Freitas A.C., Rocha-Santos T.A.P., Vasconcelos M.W., Roriz M., Rodríguez-Alcalá L.M., Gomes A.M.P., Duarte A.C. Chemical composition and nutritive value of Pleurotus citrinopileatus var cornucopiae, P. eryngii, P. salmoneo stramineus, Pholiota nameko and Hericium erinaceus. J. Food Sci. Technol. 2015;52:6927–6939. doi: 10.1007/s13197-015-1826-z. DOI

Lin S.Y., Chien S.C., Wang S.Y., Mau J.L. Non-volatile taste components and antioxidant properties of fruit body and mycelium with high ergothioneine content from the culinary-medicinal golden oyster mushroom Pleurotus citrinopileatus (Agaricomycetes) Int. J. Med. Mushrooms. 2016;18:689–698. doi: 10.1615/IntJMedMushrooms.v18.i8.50. PubMed DOI

Yıldız S., Yılmaz A., Can Z., Kılıç C., Yıldız Ü.C. Total phenolic, flavonoid, tannin contents and antioxidant properties of Pleurotus ostreatus and Pleurotus citrinopileatus cultivated on various sawdust. GIDA J. Food. 2017;42:315–323. doi: 10.15237/gida.GD16099. DOI

Chang S., Miles P. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact. 2nd ed. CRC Press LLC; Boca Raton, FL, USA: 2004.

Hu S., Wang J., Lien J., Liaw E., Lee M. Antihyperglycemic effect of polysaccharide from fermented broth of Pleurotus citrinopileatus. Appl. Microbiol. Biotechnol. 2005;70:107–113. doi: 10.1007/s00253-005-0043-5. PubMed DOI

Hu S., Liang Z., Chia Y., Lien J., Chen K., Lee M., Wang J. Antihyperlipidemic and Antioxidant Effects of Extracts from Pleurotus citrinopileatus. J. Agric. Food Chem. 2006;54:2103–2110. doi: 10.1021/jf052890d. PubMed DOI

Liang Z., Wu C., Wang J. The evaluation of using mushroom sawdust waste for cultivation of Pleurotus citrinopileatus. Fungi Sci. 2005;20:27–34.

Li Y., Liu Q., Wang H., Ng T. A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus. Biochim. Biophys. Acta. 2008;1780:51–57. doi: 10.1016/j.bbagen.2007.09.004. PubMed DOI

Minato K. Immunomodulation activity of a polysaccharide fraction of a culinary-medicinal mushroom, Pleurotus citrinopileatus Singer (Agaricomycetideae) in vitro. Int. J. Med. Mushrooms. 2008;10:235–244. doi: 10.1615/IntJMedMushr.v10.i3.40. DOI

Chen J., Wang Y., Wu J. A glycoprotein extracted from golden oyster mushroom Pleurotus citrinopileatus exhibiting growth inhibitory effect against U937 leukemia cells. J. Agric. Food Chem. 2009;57:6706–6711. doi: 10.1021/jf901284s. PubMed DOI

Chen J., Ma C., Tsai P., Wang Y., Wu J. In vitro antitumor and immunomodulatory effects of the protein PCP-3A from mushroom Pleurotus citrinopileatus. J. Agric. Food Chem. 2010;58:12117–12122. doi: 10.1021/jf103576r. PubMed DOI

Chen J., de Mejia E.G., Wu J. Inhibitory effect of a glycoprotein isolated from golden oyster mushroom (Pleurotus citrinopileatus) on the lipopolysaccharide-induced inflammatory reaction in RAW 264.7 Macrophage. J. Agric. Food Chem. 2011;59:7092–7097. doi: 10.1021/jf201335g. PubMed DOI

Xue B., Jin Z., Shi S. Antioxidant Activities of Pleurotus citrinopileatus in Fresh and Dired Character. Food Res. Dev. 2011:3–10.

Wu S., Gao S., Liu H., Sun X., Hao L., Jia L., Pang L., Jia S., Jia M. Intracellular polysaccharide and its antioxidant activity by Pleurotus citrinopileatus SM-01. Macromol. Res. 2013;21:660–668. doi: 10.1007/s13233-013-1076-8. DOI

Younis A.M., Abdel-Aziz M.M., Yosri M. Evaluation of Some Biological Applications of Pleurotus citrinopileatus and Boletus edulis Fruit Bodies. Curr. Pharm. Biotechnol. 2019;20:1309. doi: 10.2174/1389201020666190904162403. PubMed DOI

Dubost N.J., Ou B., Beelman R.B. Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chem. 2007;105:727–735. doi: 10.1016/j.foodchem.2007.01.030. DOI

Reis F.S., Martins A., Barros L., Ferreira I.C.F.R. Antioxidant properties and phenolic profile of the mostwidely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food Chem. Toxicol. 2012;50:1201–1207. doi: 10.1016/j.fct.2012.02.013. PubMed DOI

Taofiq O., Calhelha R.C., Heleno S., Barros L., Martins A., Santos-Buelga C., Quieroz M.J.R.P., Ferreira I.C. The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Res. Int. 2015;76:821–827. doi: 10.1016/j.foodres.2015.07.044. PubMed DOI

Islam T., Yu X., Xu B. Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly consumed in China. LWT Food Sci. Technol. 2016;72:423–431. doi: 10.1016/j.lwt.2016.05.005. DOI

Gąsecka M., Mleczek M., Siwulski M., Niedzielski P., Kozak L. The effect of selenium on phenolics and flavonoids in selected edible white rot fungi. LWT Food Sci. Technol. 2015;163:726–731. doi: 10.1016/j.lwt.2015.03.046. DOI

Gąsecka M., Mleczek M., Siwulski M., Niedzielski P. Phenolic composition and antioxidant properties of Pleurotus ostreatus and Pleurotus eryngii enriched with selenium and zinc. Eur. Food Res. Technol. 2016;242:723–732. doi: 10.1007/s00217-015-2580-1. DOI

Atila F., Tuzel Y., Fernández J.A., Cano A.F., Sen F. The effect of some agro–industrial wastes on yield, nutritional characteristics and antioxidant activities of Hericium erinaceus isolates. Sci. Hortic. 2018;238:246–254. doi: 10.1016/j.scienta.2018.04.049. DOI

Fasehah S.N., Shah A. Effect of using various substrates on cultivation of Pleurotus Sajor Caju. J. Eng. Sci. Technol. 2017;12:1104–1110.

Suganthi V., Krishnakumari S. Efficacy of different agricultural by product substrates and moisture content on mycelial growth of Pleurotus cornucopiae. J. Pharmacol. Phytochem. 2018;7:3407–3409.

Mukhopadhyay S.B. An Introduction to Mushroom. IntechOpen; London, UK: 2019. Oyster Mushroom Cultivation on Water Hyacinth Biomass: Assessment of Yield Performances, Nutrient, and Toxic Element Contents of Mushrooms. DOI

Siwulski M., Sobieralski K., Korszun S. Effect of the leaf extract from the maidenhair tree (Ginkgo biloba L.) on the growth of the oyster mushroom (Pleurotus spp.) mycelium. Herba Pol. 2007;53:28–32.

Valentão P., Lopes G., Valente M., Barbosa P., Andrade P.B., Silva B.M., Baptista P., Seabra R.M. Quantification of nine organic acids in wild mushrooms. J. Agric. Food Chem. 2005;53:3626–3630. doi: 10.1021/jf040465z. PubMed DOI

Li W., Gu Z., Yang Y., Zhou S., Liu Y., Zhang J. Non-volatile taste components of several cultivated mushrooms. Food Chem. 2014;143:427–431. doi: 10.1016/j.foodchem.2013.08.006. PubMed DOI

Barros L., Pereira C., Ferreira C.F.R. Optimized analysis of organic acids in edible mushrooms from Portugal by ultra fast liquid chromatography and photodiode array detection. Food Anal. Methods. 2013;6:309–316. doi: 10.1007/s12161-012-9443-1. DOI

Magdziak Z., Mleczek M., Siwulski M. Characteristics of organic acid profiles in 16 species of wild growing edible mushrooms. J. Environ. Sci. Health B. 2017;52:784–789. doi: 10.1080/03601234.2017.1356676. PubMed DOI

Stamets P. Growing Gourmet & Medicinal Mushrooms. 3rd ed. Random House USA Inc.; Barkeley, KA, USA: 2016.

Gąscka M., Magdziak Z., Siwulski M., Jasińska A., Budzyńska S., Rzymski P., Kalač P., Niedzielski P., Mleczek M., Pankiewicz J. Effect of Thymus vulgaris post-extraction waste and spent coffee grounds on quality of cultivated Pleurotus eryngii. J. Food Process. Preserv. 2020;44:e14648. doi: 10.1111/jfpp.14648. DOI

Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Method Enzymol. 1999;299:152–178. doi: 10.1016/S0076-6879(99)99017-1. DOI

Dong J., Zhang M., Lu L., Sun L., Xu M. Nitric oxide fumigation stimulates flavonoid and phenolic accumulation and enhances antioxidant activity of mushroom. Food Chem. 2012;135:1220–1225. doi: 10.1016/j.foodchem.2012.05.055. PubMed DOI

Kalač P. Mineral Composition and Radioactivity of Edible Mushrooms. 1st ed. Elsevier; New York, NY, USA: 2019.

Tabata T., Ogura T. Absorption of Calcium and Magnesium to the Fruit Body of Aragekikurage (Auricularia polytricha (Mont.) Sacc.) from Sawdust Culture Media Supplemented with Calcium and Magnesium Salts. Food Sci. Technol. Res. 2003;9:250–253. doi: 10.3136/fstr.9.250. DOI

Kaur G., Kalia A., Sodhi H.S. Selenium biofortification of Pleurotus species and its effects on yield, phytochemical profiles, and protein chemistry of fruiting bodies. J. Food Biochem. 2018;42:e12467. doi: 10.1111/jfbc.12467. DOI

Sturion G.L., Oetterer M. Composição química de cogumelos comestíveis (Pleurotus spp.) originados de cultivos em diferentes substratos. Ciênc. Tecnol. Aliment. 1995;15:189–193.

Singh M.P., Singh V.K. Yield performance and nutritional analysis of Pleurotus citrinopileatus on different agrowastes and vegetable wastes; Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products; Arcachon, France. 4–7 October 2011.

Owaid M.N., Abed A.M., Nassar B.M. Recycling cardboard wastes to produce blue oyster mushroom Pleurotus ostreatus in Iraq. Emir. J. Food Agric. 2015;27:537–541. doi: 10.9755/ejfa.2015.04.118. DOI

Donini L.P., Bernardi E., Minotto E., Nascimento J.S. Growing Shimeji on elephant grass substrate supplemented with different types of sharps. Sci. Agrar. 2009;10:67–74.

Fanadzo M., Zireva D.T., Dube E., Mashingaidze A.B. Evaluation of various substrates and supplements for biological efficiency of Pleurotus sajor-caju and Pleurotus ostreatus. Afr. J. Biotechnol. 2010;9:2756–2761. doi: 10.5897/AJB09.1259. DOI

Kalmis E., Azbar N., Yildiz H., Kalyoncu F. Feasibility of using olive mill effluent (OME) as a wetting agent during the cultivation of oyster mushroom, Pleurotus ostreatus, on wheat straw. Bioresour. Technol. 2010;99:164–169. doi: 10.1016/j.biortech.2006.11.042. PubMed DOI

Kabata-Pendias A., Pendias H. Biogeochemia Pierwiastków Śladowych. [Biogeochemistry of Trace Elements] Wydawnictwo Naukowe PWN; Warsaw, Poland: 1999. (In Polish)

Li W., Chen W., Yang Y., Zhang J., Feng J., Yu H., Zhou S., Li X., Liu Y. Effects of culture substrates on taste component content and taste quality of Lentinula edodes. Int. J. Food Sci. Technol. 2017;52:981–991. doi: 10.1111/ijfs.13362. DOI

Ousmanova D., Parker W. Fungal generation of organic acids for removal of lead from contaminated soil. Water Air Soil Pollut. 2007;179:365–380. doi: 10.1007/s11270-006-9241-8. DOI

Brennan M., Port G.L., Gormley R. Post-harvest treatment with citric acid or hydrogen peroxide to extend the shelf life of fresh sliced mushrooms. LWT Food Sci. Technol. 2000;33:285–289. doi: 10.1006/fstl.2000.0657. DOI

Yadav M., Jain S., Tomar R., Prasad G.B., Yadav H. Medicinal and biological potential of pumpkin: An updated review. Nutr. Res. Rev. 2010;23:184–190. doi: 10.1017/S0954422410000107. PubMed DOI

Montesano D., Rocchetti G., Putnik P., Lucini L. Bioactive profile of pumpkin: An overview on terpenoids and their health-promoting properties. Curr. Opin. Food Sci. 2018;22:81–87. doi: 10.1016/j.cofs.2018.02.003. DOI

Rekiel A., Grzesiuk K., Sońta M. Dynia Pastewna—Uprawa, Pozyskanie, Badania, Wykorzystanie Paszowe. Przegląd Hodowlany nr 2. Szkola Gospodarstwa Wiejskiego w Warszawie; Warsaw, Poland: 2019. (In Polish)

Imelouane B., Amhamdi H., Wathelet J.P., Ankit M., Khedid K., Bachiri E.L. Chemical composition and antimicrobial activity of essential oil of Thyme (Thymus vulgaris) from Eastern Morocco. Int. J. Agric. Biol. 2009;11:205–208.

Zhao L., Zhao G., Zhao Z., Chen P., Tong J., Hu X. Selenium distribution in a Se-enriched mushroom species of the genus Ganoderma. J. Agric. Food Chem. 2004;52:3954–3959. doi: 10.1021/jf049965i. PubMed DOI

Wang Y., Wan C., Yang J., Chen J., Yuan T., Zhao J. Collection of group characteristics of Pleurotus eryngii using machine vision; Proceedings of the International Conference on Computer and Computing Technologies in Agriculture; Jilin, China. 12–15 August 2009; Berlin/Heidelberg, Germany,: Springer; 2009. pp. 98–103.

Stojković D.S., Kovačević-Grujičić N., Reis F.S., Davidović S., Barros L., Popocić J., Petrović I., Pavić A., Glamočlija J., Ćirić A., et al. Chemical composition of the mushroom Meripilus giganteus Karst. and bioactive properties of its methanolic extract. LWT Food Sci. Technol. 2017;79:454–462. doi: 10.1016/j.lwt.2017.01.045. DOI

Karamn M., Tesanovic K., Gorjanovic S., Pastor F.T., Simanovic M., Glimac M., Pejin B. Polarography as a technique of choice for the evaluation of total antioxidant activity: The case study of selected Coprinus Comatus extracts and quinic acid, their antidiabetic ingredient. Nat. Prod. Res. 2019;13:1711–1716. doi: 10.1080/14786419.2019.1628753. PubMed DOI

Gürgen S., Yildiz S. Artificial neural network approach for protection of the color of dried golden and pink oyster mushrooms with pretreatments. Color Res. Appl. 2019;44:1006–1016. doi: 10.1002/col.22428. DOI

Gogoi P., Chutia P., Singh P., Mahant C.L. Effect of optimized ultrasound-assisted aqueous and ethanolic extraction of Pleurotus citrinopileatus mushroom on total phenol, flavonoids and antioxidant properties. J. Food Process. Eng. 2019;42:e13172. doi: 10.1111/jfpe.13172. DOI

Nattoh G., Gatebe E., Musieba F., Mathara J. Bioprospecting optimal phenology for bioactive molecules in native golden yellow Pleurotus citrinopileatus Singer. Asian Pac. J. Trop. Biomed. 2016;6:132–142. doi: 10.1016/j.apjtb.2015.10.012. DOI

Ruiz-Rodriguez A., Soler-Rivas C., Polonia I., Wichers J.H. Effect of olive mill waste (OMW) supplementation to oyster mushrooms substrates on the cultivation parameters and fruit bodies quality. Int. Biodeterior. Biodegrad. 2010;64:638–645. doi: 10.1016/j.ibiod.2010.07.003. DOI

Singh V., Pandey R., Vyas D. Antioxidant potentiality of Pleurotus ostreatus (MTCC142) cultivated on different agro wastes. Asian J. Plant Sci. Res. 2015;5:22–27.

Sardar H., Ali M.A., Anjum M.A., Nawaz F., Hussain S., Naz S., Karimi S.M. Agro-industrial residues influence mineral elements accumulation and nutritional composition of king oyster mushroom (Pleurotus eryngii) Sci. Hortic. 2017;225:327–334. doi: 10.1016/j.scienta.2017.07.010. DOI

Freitas A.C., Antunes M.B., Rodrigues D., Sousa S., Amorim M., Barroso M.F., Carvalho A., Ferrador S.M., Gomes A.M. Use of coffee by-products for the cultivation of Pleurotus citrinopileatus and Pleurotus salmoneo-stramineus and its impact on biological properties of extracts thereof. Int. J. Food Sci. Technol. 2018;53:1914–1924. doi: 10.1111/ijfs.13778. DOI

da Paz M.F., Breyer C.A., Longhi R.F., Vicente M.S., Oviedo P. Determining the basic composition and total phenolic compounds of Pleurotus sajor-caju cultivated in three different substrates by solid state bioprocess. J. Biotechnol. Biodivers. 2012;3:11–14. doi: 10.20873/jbb.uft.cemaf.v3n2.paz. DOI

Chen P.H., Weng Y.M., Lin S.M., Yu Z.R., Wang B.J. Molecular weight affected antioxidant, hypoglycemic and hypotensive activities of cold water extract from Pleurotus citrinopileatus. J. Food Sci. 2017;82:2456–2461. doi: 10.1111/1750-3841.13851. PubMed DOI

Koutrotsios G., Kalogeropoulos N., Kaliora A.C., Zervakis G.I. Toward an increased functionality in oyster (Pleurotus) mushrooms produced on grape marc or olive mill wastes serving as sources of bioactive compounds. J. Agric. Food Chem. 2018;66:5971–5983. doi: 10.1021/acs.jafc.8b01532. PubMed DOI

Koutrotsios G., Larou E., Mountzouris K.C., Zervakis G. Detoxification of olive millwastewater and bioconversion of olive crop residues into high-value-added biomass by the choice edible mushroom Hericium erinaceus. Appl. Biochem. Biotechnol. 2016;180:195–209. doi: 10.1007/s12010-016-2093-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...