Experimental Validation of the MRcollar: An MR Compatible Applicator for Deep Heating in the Head and Neck Region

. 2021 Nov 10 ; 13 (22) : . [epub] 20211110

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34830773

Grantová podpora
EMCR 2012-5472 Dutch Cancer Society
11368 Dutch Cancer Society

Clinical effectiveness of hyperthermia treatments, in which tumor tissue is artificially heated to 40-44 °C for 60-90 min, can be hampered by a lack of accurate temperature monitoring. The need for noninvasive temperature monitoring in the head and neck region (H&N) and the potential of MR thermometry prompt us to design an MR compatible hyperthermia applicator: the MRcollar. In this work, we validate the design, numerical model, and MR performance of the MRcollar. The MRcollar antennas have low reflection coefficients (<-15 dB) and the intended low interaction between the individual antenna modules (<-32 dB). A 10 °C increase in 3 min was reached in a muscle-equivalent phantom, such that the specifications from the European Society for Hyperthermic Oncology were easily reached. The MRcollar had a minimal effect on MR image quality and a five-fold improvement in SNR was achieved using the integrated coils of the MRcollar, compared to the body coil. The feasibility of using the MRcollar in an MR environment was shown by a synchronous heating experiment. The match between the predicted SAR and measured SAR using MR thermometry satisfied the gamma criteria [distance-to-agreement = 5 mm, dose-difference = 7%]. All experiments combined show that the MRcollar delivers on the needs for MR-hyperthermia in the H&N and is ready for in vivo investigation.

Zobrazit více v PubMed

Datta N.R., Puric E., Klingbiel D., Gomez S., Bodis S. Hyperthermia and radiation therapy in locoregional recurrent breast cancers: A systematic review and meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2016;94:1073–1087. doi: 10.1016/j.ijrobp.2015.12.361. PubMed DOI

Datta N.R., Rogers S., Ordóñez S.G., Puric E., Bodis S. Hyperthermia and radiotherapy in the management of head and neck cancers: A systematic review and meta-analysis. Int. J. Hyperth. 2016;32:31–40. doi: 10.3109/02656736.2015.1099746. PubMed DOI

Datta N.R., Rogers S., Klingbiel D., Gómez S., Puric E., Bodis S. Hyperthermia and radiotherapy with or without chemotherapy in locally advanced cervical cancer: A systematic review with conventional and network meta-analyses. Int. J. Hyperth. 2016;32:809–821. doi: 10.1080/02656736.2016.1195924. PubMed DOI

Bakker A., van der Zee J., van Tienhoven G., Kok H.P., Rasch C.R., Crezee H. Temperature and thermal dose during radiotherapy and hyperthermia for recurrent breast cancer are related to clinical outcome and thermal toxicity: A systematic review. Int. J. Hyperth. 2019;36:1023–1038. doi: 10.1080/02656736.2019.1665718. PubMed DOI

Amichetti M., Romano M., Busana L., Bolner A., Fellin G., Pani G., Tomio L., Valdagni R. Hyperfractionated radiation in combination with local hyperthermia in the treatment of advanced squamous cell carcinoma of the head and neck: A phase I–II study. Radiother. Oncol. 1997;45:155–158. doi: 10.1016/S0167-8140(97)00134-5. PubMed DOI

Hua Y., Ma S., Fu Z., Hu Q., Wang L.E.I., Piao Y. Intracavity hyperthermia in nasopharyngeal cancer: A phase III clinical study. Int. J. Hyperth. 2011;27:180–186. doi: 10.3109/02656736.2010.503982. PubMed DOI

Verduijn G.M., de Wee E.M., Rijnen Z., Togni P., Hardillo J.A.U., Ten Hove I., Franckena M., van Rhoon G.C., Paulides M.M. Deep hyperthermia with the HYPERcollar system combined with irradiation for advanced head and neck carcinoma—A feasibility study. Int. J. Hyperth. 2018;34:994–1001. doi: 10.1080/02656736.2018.1454610. PubMed DOI

Feasibility, SAR Distribution and Clinical Outcome upon Re-Irradiation and Deep Hyperthermia Using the Hypercollar3D in Head and Neck Cancer Patients. [(accessed on 28 September 2021)]. Available online: https://programm.conventus.de/index.php?id=icho2021&tx_coprogramm_programm%5Bprogramm%5D=106&tx_coprogramm_programm%5Bsession%5D=14&tx_coprogramm_programm%5BcurrentPage%5D=&tx_coprogramm_programm%5Baction%5D=programm&tx_coprogramm_programm%5Bcontroller%5D=Source&cHash=861da91e121ea43a7bf09765137e7589. PubMed PMC

Zschaeck S., Weingärtner J., Ghadjar P., Wust P., Mehrhof F., Kalinauskaite G., Ehrhardt V.H., Hartmann V., Tinhofer I., Heiland M., et al. Fever range whole body hyperthermia for re-irradiation of head and neck squamous cell carcinomas: Final results of a prospective study. Oral Oncol. 2021;116:105240. doi: 10.1016/j.oraloncology.2021.105240. PubMed DOI

Paulides M., Bakker J., Neufeld E., van der Zee J., Jansen P., Levendag P., van Rhoon G. The HYPERcollar: A novel applicator for hyperthermia in the head and neck. Int. J. Hyperth. 2007;23:567–576. doi: 10.1080/02656730701670478. PubMed DOI

Togni P., Rijnen Z., Numan W.C.M., Verhaart R.F., Bakker J.F., Van Rhoon G.C., Paulides M.M. Electromagnetic redesign of the HYPERcollar applicator: Toward improved deep local head-and-neck hyperthermia. Phys. Med. Biol. 2013;58:5997. doi: 10.1088/0031-9155/58/17/5997. PubMed DOI

Rijnen Z., Togni P., Roskam R., van de Geer S.G., Goossens R.H.M., Paulides M.M. Quality and comfort in head and neck hyperthermia: A redesign according to clinical experience and simulation studies. Int. J. Hyperth. 2015;31:823–830. doi: 10.3109/02656736.2015.1076893. PubMed DOI

Paulides M.M., Verduijn G.M., Van Holthe N. Status quo and directions in deep head and neck hyperthermia. Radiat. Oncol. 2016;11:21. doi: 10.1186/s13014-016-0588-8. PubMed DOI PMC

Winter L., Oberacker E., Paul K., Ji Y., Oezerdem C., Ghadjar P., Thieme A., Budach V., Wust P., Niendorf T. Magnetic resonance thermometry: Methodology, pitfalls and practical solutions. Int. J. Hyperth. 2016;32:63–75. doi: 10.3109/02656736.2015.1108462. PubMed DOI

Drizdal T., Sumser K., Bellizzi G.G., Fiser O., Vrba J., Rhoon G.C.V., Yeo D.T.B., Paulides M.M. Simulation guided design of the MRcollar: A MR compatible applicator for deep heating in the head and neck region. Int. J. Hyperth. 2021;38:382–392. doi: 10.1080/02656736.2021.1892836. PubMed DOI

Bruggmoser G., Bauchowitz S., Canters R., Crezee H., Ehmann M., Gellermann J., Lamprecht U., Lomax N., Messmer M.B., Ott O., et al. Quality assurance for clinical studies in regional deep hyperthermia. Strahlenther. Onkol. 2011;187:605. doi: 10.1007/s00066-011-1145-x. PubMed DOI

Trefná H.D., Crezee J., Schmidt M., Marder D., Lamprecht U., Ehmann M., Nadobny J., Hartmann J., Lomax N., Abdel-Rahman S., et al. Quality assurance guidelines for superficial hyperthermia clinical trials. Strahlenther. Onkol. 2017;193:351–366. doi: 10.1007/s00066-017-1106-0. PubMed DOI PMC

Dobšíček Trefná H., Schmidt M., Van Rhoon G., Kok H., Gordeyev S., Lamprecht U., Marder D., Nadobny J., Ghadjar P., Abdel-Rahman S., et al. Quality assurance guidelines for interstitial hyperthermia. Int. J. Hyperth. 2019;36:276–293. doi: 10.1080/02656736.2018.1564155. PubMed DOI

Verhaart R.F., Verduijn G.M., Fortunati V., Rijnen Z., van Walsum T., Veenland J.F., Paulides M.M. Accurate 3D temperature dosimetry during hyperthermia therapy by combining invasive measurements and patient-specific simulations. Int. J. Hyperth. 2015;31:686–692. doi: 10.3109/02656736.2015.1052855. PubMed DOI

Aklan B., Zilles B., Paprottka P., Manz K., Pfirrmann M., Santl M., Abdel-Rahman S., Lindner L. Regional deep hyperthermia: Quantitative evaluation of predicted and direct measured temperature distributions in patients with high-risk extremity soft-tissue sarcoma. Int. J. Hyperth. 2019:169–184. doi: 10.1080/02656736.2018.1545098. PubMed DOI

Sebeke L.C., Rademann P., Maul A.C., Yeo S.Y., Castillo Gómez J.D., Deenen D.A., Schmidt P., de Jager B., Heemels W., Grüll H., et al. Visualization of thermal washout due to spatiotemporally heterogenous perfusion in the application of a model-based control algorithm for MR-HIFU mediated hyperthermia. Int. J. Hyperth. 2021;38:1174–1187. doi: 10.1080/02656736.2021.1933616. PubMed DOI

Lüdemann L., Wlodarczyk W., Nadobny J., Weihrauch M., Gellermann J., Wust P. Non-invasive magnetic resonance thermography during regional hyperthermia. Int. J. Hyperth. 2010;26:273–282. doi: 10.3109/02656731003596242. PubMed DOI

Adibzadeh F., Sumser K., Curto S., Yeo D.T.B., Shishegar A.A., Paulides M.M. Systematic review of pre-clinical and clinical devices for magnetic resonance-guided radiofrequency hyperthermia. Int. J. Hyperth. 2020;37:15–27. doi: 10.1080/02656736.2019.1705404. PubMed DOI

Feddersen T.V., Hernandez-Tamames J.A., Franckena M., van Rhoon G.C., Paulides M.M. Clinical performance and future potential of magnetic resonance thermometry in hyperthermia. Cancers. 2021;13:31. doi: 10.3390/cancers13010031. PubMed DOI PMC

Numan W.C.M., Hofstetter L.W., Kotek G., Bakker J.F., Fiveland E.W., Houston G.C., Kudielka G., Yeo D.T.B., Paulides M.M. Exploration of MR-guided head and neck hyperthermia by phantom testing of a modified prototype applicator for use with proton resonance frequency shift thermometry. Int. J. Hyperth. 2014;30:184–191. doi: 10.3109/02656736.2014.910615. PubMed DOI

Winter L., Oezerdem C., Hoffmann W., van de Lindt T., Periquito J., Ji Y., Ghadjar P., Budach V., Wust P., Niendorf T. Thermal magnetic resonance: Physics considerations and electromagnetic field simulations up to 23.5 Tesla (1 GHz) Radiat. Oncol. 2015;10:201. doi: 10.1186/s13014-015-0510-9. PubMed DOI PMC

Han H., Oberacker E., Kuehne A., Wang S., Eigentler T.W., Grass E., Niendorf T. Multi-channel RF supervision module for thermal magnetic resonance based cancer therapy. Cancers. 2021;13:1001. doi: 10.3390/cancers13051001. PubMed DOI PMC

Sumser K., Bellizzi G.G., Forner R., Drizdal T., Tamames J.A.H., Van Rhoon G.C., Paulides M.M. Dual-function MR-guided hyperthermia: An innovative integrated approach and experimental demonstration of proof of principle. IEEE Trans. Biomed. Eng. 2020;68:712–717. doi: 10.1109/TBME.2020.3012734. PubMed DOI

Bellizzi G.G., Sumser K., Van Rhoon G.C., Forner R., Paulides M.M. Feasibility of Integrating an MR Receive Coil Array into the MRcollar; Proceedings of the 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science; Rome, Italy. 29 August–5 September 2020; pp. 1–4.

Paulides M.M., Mestrom R.M.C., Salim G., Adela B.B., Numan W.C.M., Drizdal T., Yeo D.T.B., Smolders A.B. A printed Yagi–Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators. Phys. Med. Biol. 2017;62:1831. doi: 10.1088/1361-6560/aa56b3. PubMed DOI

Fink M. Time reversal of ultrasonic fields. I. Basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1992;39:555–566. doi: 10.1109/58.156174. PubMed DOI

Bakker J.F., Paulides M.M., Westra A.H., Schippers H., Van Rhoon G.C. Design and test of a 434 MHz multi-channel amplifier system for targeted hyperthermia applicators. Int. J. Hyperth. 2010;26:158–170. doi: 10.3109/02656730903341191. PubMed DOI

Low D.A., Harms W.B., Mutic S., Purdy J.A. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25:656–661. doi: 10.1118/1.598248. PubMed DOI

Goerner F.L., Clarke G.D. Measuring signal-to-noise ratio in partially parallel imaging MRI. Med Phys. 2011;38:5049–5057. doi: 10.1118/1.3618730. PubMed DOI PMC

Poorter J.D., Wagter C.D., Deene Y.D., Thomsen C., Ståhlberg F., Achten E. Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: In vivo results in human muscle. Magn. Reson. Med. 1995;33:74–81. doi: 10.1002/mrm.1910330111. PubMed DOI

Paulides M.M., Bakker J.F., van Rhoon G.C. Electromagnetic head-and-neck hyperthermia applicator: Experimental phantom verification and FDTD model. Int. J. Radiat. Oncol. Biol. Phys. 2007;68:612–620. doi: 10.1016/j.ijrobp.2007.01.035. PubMed DOI

Paulides M.M., Wielheesen D.H.M., Van Der Zee J., Van Rhoon G.C. Assessment of the local SAR distortion by major anatomical structures in a cylindrical neck phantom. Int. J. Hyperth. 2005;21:125–140. doi: 10.1080/02656730400013855. PubMed DOI

Bucci O.M., Gennarelli C., Savarese C. Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples. IEEE Trans. Antennas Propag. 1998;46:351–359. doi: 10.1109/8.662654. DOI

Kok H.P., Van Haaren P.M.A., Van de Kamer J.B., Wiersma J., Van Dijk J.D.P., Crezee J. High-resolution temperature-based optimization for hyperthermia treatment planning. Phys. Med. Biol. 2005;50:3127. doi: 10.1088/0031-9155/50/13/011. PubMed DOI

Rijnen Z., Bakker J.F., Canters R.A.M., Togni P., Verduijn G.M., Levendag P.C., Van Rhoon G.C., Paulides M.M. Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck. Int. J. Hyperth. 2013;29:181–193. doi: 10.3109/02656736.2013.783934. PubMed DOI

Bellizzi G.G., Drizdal T., van Rhoon G.C., Crocco L., Isernia T., Paulides M.M. The potential of constrained SAR focusing for hyperthermia treatment planning: Analysis for the head & neck region. Phys. Med. Biol. 2018;64:015013. PubMed

Cappiello G., Mc Ginley B., Elahi M.A., Drizdal T., Paulides M.M., Glavin M., O’Halloran M., Jones E. Differential evolution optimization of the SAR distribution for head and neck hyperthermia. IEEE Trans. Biomed. Eng. 2017;64:1875–1885. doi: 10.1109/TBME.2016.2627941. PubMed DOI

Köhler T., Maass P., Wust P., Seebass M. A fast algorithm to find optimal controls of multiantenna applicators in regional hyperthermia. Phys. Med. Biol. 2001;46:2503. doi: 10.1088/0031-9155/46/9/318. PubMed DOI

Kuehne A., Oberacker E., Waiczies H., Niendorf T. Solving the time-and frequency-multiplexed problem of constrained radiofrequency induced hyperthermia. Cancers. 2020;12:1072. doi: 10.3390/cancers12051072. PubMed DOI PMC

Adibzadeh F., Paulides M.M., van Rhoon G.C. SAR thresholds for electromagnetic exposure using functional thermal dose limits. Int. J. Hyperth. 2018;34:1248–1254. doi: 10.1080/02656736.2018.1424945. PubMed DOI

Sumser K., Bellizzi G.G., Van Rhoon G.C., Paulides M.M. The potential of adjusting water bolus liquid properties for economic and precise MR thermometry guided radiofrequency hyperthermia. Sensors. 2020;20:2946. doi: 10.3390/s20102946. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace