Experimental Validation of the MRcollar: An MR Compatible Applicator for Deep Heating in the Head and Neck Region
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
EMCR 2012-5472
Dutch Cancer Society
11368
Dutch Cancer Society
PubMed
34830773
PubMed Central
PMC8615935
DOI
10.3390/cancers13225617
PII: cancers13225617
Knihovny.cz E-zdroje
- Klíčová slova
- MR thermometry, MRI guided interventions, hyperthermia, microwave hyperthermia,
- Publikační typ
- časopisecké články MeSH
Clinical effectiveness of hyperthermia treatments, in which tumor tissue is artificially heated to 40-44 °C for 60-90 min, can be hampered by a lack of accurate temperature monitoring. The need for noninvasive temperature monitoring in the head and neck region (H&N) and the potential of MR thermometry prompt us to design an MR compatible hyperthermia applicator: the MRcollar. In this work, we validate the design, numerical model, and MR performance of the MRcollar. The MRcollar antennas have low reflection coefficients (<-15 dB) and the intended low interaction between the individual antenna modules (<-32 dB). A 10 °C increase in 3 min was reached in a muscle-equivalent phantom, such that the specifications from the European Society for Hyperthermic Oncology were easily reached. The MRcollar had a minimal effect on MR image quality and a five-fold improvement in SNR was achieved using the integrated coils of the MRcollar, compared to the body coil. The feasibility of using the MRcollar in an MR environment was shown by a synchronous heating experiment. The match between the predicted SAR and measured SAR using MR thermometry satisfied the gamma criteria [distance-to-agreement = 5 mm, dose-difference = 7%]. All experiments combined show that the MRcollar delivers on the needs for MR-hyperthermia in the H&N and is ready for in vivo investigation.
Department of Radiotherapy Erasmus Medical Center Cancer Institute 3015 GD Rotterdam The Netherlands
Zobrazit více v PubMed
Datta N.R., Puric E., Klingbiel D., Gomez S., Bodis S. Hyperthermia and radiation therapy in locoregional recurrent breast cancers: A systematic review and meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2016;94:1073–1087. doi: 10.1016/j.ijrobp.2015.12.361. PubMed DOI
Datta N.R., Rogers S., Ordóñez S.G., Puric E., Bodis S. Hyperthermia and radiotherapy in the management of head and neck cancers: A systematic review and meta-analysis. Int. J. Hyperth. 2016;32:31–40. doi: 10.3109/02656736.2015.1099746. PubMed DOI
Datta N.R., Rogers S., Klingbiel D., Gómez S., Puric E., Bodis S. Hyperthermia and radiotherapy with or without chemotherapy in locally advanced cervical cancer: A systematic review with conventional and network meta-analyses. Int. J. Hyperth. 2016;32:809–821. doi: 10.1080/02656736.2016.1195924. PubMed DOI
Bakker A., van der Zee J., van Tienhoven G., Kok H.P., Rasch C.R., Crezee H. Temperature and thermal dose during radiotherapy and hyperthermia for recurrent breast cancer are related to clinical outcome and thermal toxicity: A systematic review. Int. J. Hyperth. 2019;36:1023–1038. doi: 10.1080/02656736.2019.1665718. PubMed DOI
Amichetti M., Romano M., Busana L., Bolner A., Fellin G., Pani G., Tomio L., Valdagni R. Hyperfractionated radiation in combination with local hyperthermia in the treatment of advanced squamous cell carcinoma of the head and neck: A phase I–II study. Radiother. Oncol. 1997;45:155–158. doi: 10.1016/S0167-8140(97)00134-5. PubMed DOI
Hua Y., Ma S., Fu Z., Hu Q., Wang L.E.I., Piao Y. Intracavity hyperthermia in nasopharyngeal cancer: A phase III clinical study. Int. J. Hyperth. 2011;27:180–186. doi: 10.3109/02656736.2010.503982. PubMed DOI
Verduijn G.M., de Wee E.M., Rijnen Z., Togni P., Hardillo J.A.U., Ten Hove I., Franckena M., van Rhoon G.C., Paulides M.M. Deep hyperthermia with the HYPERcollar system combined with irradiation for advanced head and neck carcinoma—A feasibility study. Int. J. Hyperth. 2018;34:994–1001. doi: 10.1080/02656736.2018.1454610. PubMed DOI
Feasibility, SAR Distribution and Clinical Outcome upon Re-Irradiation and Deep Hyperthermia Using the Hypercollar3D in Head and Neck Cancer Patients. [(accessed on 28 September 2021)]. Available online: https://programm.conventus.de/index.php?id=icho2021&tx_coprogramm_programm%5Bprogramm%5D=106&tx_coprogramm_programm%5Bsession%5D=14&tx_coprogramm_programm%5BcurrentPage%5D=&tx_coprogramm_programm%5Baction%5D=programm&tx_coprogramm_programm%5Bcontroller%5D=Source&cHash=861da91e121ea43a7bf09765137e7589. PubMed PMC
Zschaeck S., Weingärtner J., Ghadjar P., Wust P., Mehrhof F., Kalinauskaite G., Ehrhardt V.H., Hartmann V., Tinhofer I., Heiland M., et al. Fever range whole body hyperthermia for re-irradiation of head and neck squamous cell carcinomas: Final results of a prospective study. Oral Oncol. 2021;116:105240. doi: 10.1016/j.oraloncology.2021.105240. PubMed DOI
Paulides M., Bakker J., Neufeld E., van der Zee J., Jansen P., Levendag P., van Rhoon G. The HYPERcollar: A novel applicator for hyperthermia in the head and neck. Int. J. Hyperth. 2007;23:567–576. doi: 10.1080/02656730701670478. PubMed DOI
Togni P., Rijnen Z., Numan W.C.M., Verhaart R.F., Bakker J.F., Van Rhoon G.C., Paulides M.M. Electromagnetic redesign of the HYPERcollar applicator: Toward improved deep local head-and-neck hyperthermia. Phys. Med. Biol. 2013;58:5997. doi: 10.1088/0031-9155/58/17/5997. PubMed DOI
Rijnen Z., Togni P., Roskam R., van de Geer S.G., Goossens R.H.M., Paulides M.M. Quality and comfort in head and neck hyperthermia: A redesign according to clinical experience and simulation studies. Int. J. Hyperth. 2015;31:823–830. doi: 10.3109/02656736.2015.1076893. PubMed DOI
Paulides M.M., Verduijn G.M., Van Holthe N. Status quo and directions in deep head and neck hyperthermia. Radiat. Oncol. 2016;11:21. doi: 10.1186/s13014-016-0588-8. PubMed DOI PMC
Winter L., Oberacker E., Paul K., Ji Y., Oezerdem C., Ghadjar P., Thieme A., Budach V., Wust P., Niendorf T. Magnetic resonance thermometry: Methodology, pitfalls and practical solutions. Int. J. Hyperth. 2016;32:63–75. doi: 10.3109/02656736.2015.1108462. PubMed DOI
Drizdal T., Sumser K., Bellizzi G.G., Fiser O., Vrba J., Rhoon G.C.V., Yeo D.T.B., Paulides M.M. Simulation guided design of the MRcollar: A MR compatible applicator for deep heating in the head and neck region. Int. J. Hyperth. 2021;38:382–392. doi: 10.1080/02656736.2021.1892836. PubMed DOI
Bruggmoser G., Bauchowitz S., Canters R., Crezee H., Ehmann M., Gellermann J., Lamprecht U., Lomax N., Messmer M.B., Ott O., et al. Quality assurance for clinical studies in regional deep hyperthermia. Strahlenther. Onkol. 2011;187:605. doi: 10.1007/s00066-011-1145-x. PubMed DOI
Trefná H.D., Crezee J., Schmidt M., Marder D., Lamprecht U., Ehmann M., Nadobny J., Hartmann J., Lomax N., Abdel-Rahman S., et al. Quality assurance guidelines for superficial hyperthermia clinical trials. Strahlenther. Onkol. 2017;193:351–366. doi: 10.1007/s00066-017-1106-0. PubMed DOI PMC
Dobšíček Trefná H., Schmidt M., Van Rhoon G., Kok H., Gordeyev S., Lamprecht U., Marder D., Nadobny J., Ghadjar P., Abdel-Rahman S., et al. Quality assurance guidelines for interstitial hyperthermia. Int. J. Hyperth. 2019;36:276–293. doi: 10.1080/02656736.2018.1564155. PubMed DOI
Verhaart R.F., Verduijn G.M., Fortunati V., Rijnen Z., van Walsum T., Veenland J.F., Paulides M.M. Accurate 3D temperature dosimetry during hyperthermia therapy by combining invasive measurements and patient-specific simulations. Int. J. Hyperth. 2015;31:686–692. doi: 10.3109/02656736.2015.1052855. PubMed DOI
Aklan B., Zilles B., Paprottka P., Manz K., Pfirrmann M., Santl M., Abdel-Rahman S., Lindner L. Regional deep hyperthermia: Quantitative evaluation of predicted and direct measured temperature distributions in patients with high-risk extremity soft-tissue sarcoma. Int. J. Hyperth. 2019:169–184. doi: 10.1080/02656736.2018.1545098. PubMed DOI
Sebeke L.C., Rademann P., Maul A.C., Yeo S.Y., Castillo Gómez J.D., Deenen D.A., Schmidt P., de Jager B., Heemels W., Grüll H., et al. Visualization of thermal washout due to spatiotemporally heterogenous perfusion in the application of a model-based control algorithm for MR-HIFU mediated hyperthermia. Int. J. Hyperth. 2021;38:1174–1187. doi: 10.1080/02656736.2021.1933616. PubMed DOI
Lüdemann L., Wlodarczyk W., Nadobny J., Weihrauch M., Gellermann J., Wust P. Non-invasive magnetic resonance thermography during regional hyperthermia. Int. J. Hyperth. 2010;26:273–282. doi: 10.3109/02656731003596242. PubMed DOI
Adibzadeh F., Sumser K., Curto S., Yeo D.T.B., Shishegar A.A., Paulides M.M. Systematic review of pre-clinical and clinical devices for magnetic resonance-guided radiofrequency hyperthermia. Int. J. Hyperth. 2020;37:15–27. doi: 10.1080/02656736.2019.1705404. PubMed DOI
Feddersen T.V., Hernandez-Tamames J.A., Franckena M., van Rhoon G.C., Paulides M.M. Clinical performance and future potential of magnetic resonance thermometry in hyperthermia. Cancers. 2021;13:31. doi: 10.3390/cancers13010031. PubMed DOI PMC
Numan W.C.M., Hofstetter L.W., Kotek G., Bakker J.F., Fiveland E.W., Houston G.C., Kudielka G., Yeo D.T.B., Paulides M.M. Exploration of MR-guided head and neck hyperthermia by phantom testing of a modified prototype applicator for use with proton resonance frequency shift thermometry. Int. J. Hyperth. 2014;30:184–191. doi: 10.3109/02656736.2014.910615. PubMed DOI
Winter L., Oezerdem C., Hoffmann W., van de Lindt T., Periquito J., Ji Y., Ghadjar P., Budach V., Wust P., Niendorf T. Thermal magnetic resonance: Physics considerations and electromagnetic field simulations up to 23.5 Tesla (1 GHz) Radiat. Oncol. 2015;10:201. doi: 10.1186/s13014-015-0510-9. PubMed DOI PMC
Han H., Oberacker E., Kuehne A., Wang S., Eigentler T.W., Grass E., Niendorf T. Multi-channel RF supervision module for thermal magnetic resonance based cancer therapy. Cancers. 2021;13:1001. doi: 10.3390/cancers13051001. PubMed DOI PMC
Sumser K., Bellizzi G.G., Forner R., Drizdal T., Tamames J.A.H., Van Rhoon G.C., Paulides M.M. Dual-function MR-guided hyperthermia: An innovative integrated approach and experimental demonstration of proof of principle. IEEE Trans. Biomed. Eng. 2020;68:712–717. doi: 10.1109/TBME.2020.3012734. PubMed DOI
Bellizzi G.G., Sumser K., Van Rhoon G.C., Forner R., Paulides M.M. Feasibility of Integrating an MR Receive Coil Array into the MRcollar; Proceedings of the 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science; Rome, Italy. 29 August–5 September 2020; pp. 1–4.
Paulides M.M., Mestrom R.M.C., Salim G., Adela B.B., Numan W.C.M., Drizdal T., Yeo D.T.B., Smolders A.B. A printed Yagi–Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators. Phys. Med. Biol. 2017;62:1831. doi: 10.1088/1361-6560/aa56b3. PubMed DOI
Fink M. Time reversal of ultrasonic fields. I. Basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1992;39:555–566. doi: 10.1109/58.156174. PubMed DOI
Bakker J.F., Paulides M.M., Westra A.H., Schippers H., Van Rhoon G.C. Design and test of a 434 MHz multi-channel amplifier system for targeted hyperthermia applicators. Int. J. Hyperth. 2010;26:158–170. doi: 10.3109/02656730903341191. PubMed DOI
Low D.A., Harms W.B., Mutic S., Purdy J.A. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25:656–661. doi: 10.1118/1.598248. PubMed DOI
Goerner F.L., Clarke G.D. Measuring signal-to-noise ratio in partially parallel imaging MRI. Med Phys. 2011;38:5049–5057. doi: 10.1118/1.3618730. PubMed DOI PMC
Poorter J.D., Wagter C.D., Deene Y.D., Thomsen C., Ståhlberg F., Achten E. Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: In vivo results in human muscle. Magn. Reson. Med. 1995;33:74–81. doi: 10.1002/mrm.1910330111. PubMed DOI
Paulides M.M., Bakker J.F., van Rhoon G.C. Electromagnetic head-and-neck hyperthermia applicator: Experimental phantom verification and FDTD model. Int. J. Radiat. Oncol. Biol. Phys. 2007;68:612–620. doi: 10.1016/j.ijrobp.2007.01.035. PubMed DOI
Paulides M.M., Wielheesen D.H.M., Van Der Zee J., Van Rhoon G.C. Assessment of the local SAR distortion by major anatomical structures in a cylindrical neck phantom. Int. J. Hyperth. 2005;21:125–140. doi: 10.1080/02656730400013855. PubMed DOI
Bucci O.M., Gennarelli C., Savarese C. Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples. IEEE Trans. Antennas Propag. 1998;46:351–359. doi: 10.1109/8.662654. DOI
Kok H.P., Van Haaren P.M.A., Van de Kamer J.B., Wiersma J., Van Dijk J.D.P., Crezee J. High-resolution temperature-based optimization for hyperthermia treatment planning. Phys. Med. Biol. 2005;50:3127. doi: 10.1088/0031-9155/50/13/011. PubMed DOI
Rijnen Z., Bakker J.F., Canters R.A.M., Togni P., Verduijn G.M., Levendag P.C., Van Rhoon G.C., Paulides M.M. Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck. Int. J. Hyperth. 2013;29:181–193. doi: 10.3109/02656736.2013.783934. PubMed DOI
Bellizzi G.G., Drizdal T., van Rhoon G.C., Crocco L., Isernia T., Paulides M.M. The potential of constrained SAR focusing for hyperthermia treatment planning: Analysis for the head & neck region. Phys. Med. Biol. 2018;64:015013. PubMed
Cappiello G., Mc Ginley B., Elahi M.A., Drizdal T., Paulides M.M., Glavin M., O’Halloran M., Jones E. Differential evolution optimization of the SAR distribution for head and neck hyperthermia. IEEE Trans. Biomed. Eng. 2017;64:1875–1885. doi: 10.1109/TBME.2016.2627941. PubMed DOI
Köhler T., Maass P., Wust P., Seebass M. A fast algorithm to find optimal controls of multiantenna applicators in regional hyperthermia. Phys. Med. Biol. 2001;46:2503. doi: 10.1088/0031-9155/46/9/318. PubMed DOI
Kuehne A., Oberacker E., Waiczies H., Niendorf T. Solving the time-and frequency-multiplexed problem of constrained radiofrequency induced hyperthermia. Cancers. 2020;12:1072. doi: 10.3390/cancers12051072. PubMed DOI PMC
Adibzadeh F., Paulides M.M., van Rhoon G.C. SAR thresholds for electromagnetic exposure using functional thermal dose limits. Int. J. Hyperth. 2018;34:1248–1254. doi: 10.1080/02656736.2018.1424945. PubMed DOI
Sumser K., Bellizzi G.G., Van Rhoon G.C., Paulides M.M. The potential of adjusting water bolus liquid properties for economic and precise MR thermometry guided radiofrequency hyperthermia. Sensors. 2020;20:2946. doi: 10.3390/s20102946. PubMed DOI PMC