Kinetics and Energetics of Intramolecular Electron Transfer in Single-Point Labeled TUPS-Cytochrome c Derivatives
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NKFI-1 K-124922, KÖ-37/2020, 2018-1.2.1-NKP-2018-00009
National Research and Development Office, Hungary
PubMed
34834068
PubMed Central
PMC8621336
DOI
10.3390/molecules26226976
PII: molecules26226976
Knihovny.cz E-zdroje
- Klíčová slova
- TUPS, cytochrome c, intramolecular electron transfer, time-resolved spectroscopy, triplet excited state,
- MeSH
- bodová mutace MeSH
- cystein chemie genetika MeSH
- cytochromy c chemie genetika MeSH
- hem chemie MeSH
- kinetika MeSH
- koně MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- oxidace-redukce MeSH
- pyreny chemie MeSH
- transport elektronů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cystein MeSH
- cytochromy c MeSH
- hem MeSH
- pyreny MeSH
- thiouredopyrenetrisulfonate MeSH Prohlížeč
Electron transfer within and between proteins is a fundamental biological phenomenon, in which efficiency depends on several physical parameters. We have engineered a number of horse heart cytochrome c single-point mutants with cysteine substitutions at various positions of the protein surface. To these cysteines, as well as to several native lysine side chains, the photoinduced redox label 8-thiouredopyrene-1,3,6-trisulfonate (TUPS) was covalently attached. The long-lived, low potential triplet excited state of TUPS, generated with high quantum efficiency, serves as an electron donor to the oxidized heme c. The rates of the forward (from the label to the heme) and the reverse (from the reduced heme back to the oxidized label) electron transfer reactions were obtained from multichannel and single wavelength flash photolysis absorption kinetic experiments. The electronic coupling term and the reorganization energy for electron transfer in this system were estimated from temperature-dependent experiments and compared with calculated parameters using the crystal and the solution NMR structure of the protein. These results together with the observation of multiexponential kinetics strongly support earlier conclusions that the flexible arm connecting TUPS to the protein allows several shortcut routes for the electron involving through space jumps between the label and the protein surface.
Biology Department Lomonosov Moscow State University Leninskie Gory 1 12 119899 Moscow Russia
Institute of Biophysics Biological Research Centre Temesvári Körút 62 H 6726 Szeged Hungary
Zobrazit více v PubMed
Moser C.C., Keske J.M., Warncke K., Farid R.S., Dutton P.L. Nature of biological electron transfer. Nature. 1992;355:796–802. doi: 10.1038/355796a0. PubMed DOI
Winkler J.R., Gray H.B. Electron tunneling in proteins: Role of the intervening medium. JBIC J. Biol. Inorg. Chem. 1997;2:399–404. doi: 10.1007/s007750050150. DOI
Beratan D.N., Onuchic J.N., Winkler J.R., Gray H.B. Electron-tunneling pathways in proteins. Science. 1992;258:1740–1741. doi: 10.1126/science.1334572. PubMed DOI
Page C.C., Moser C.C., Chen X., Dutton P.L. Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature. 1999;402:47–52. doi: 10.1038/46972. PubMed DOI
Gray H.B., Winkler J.R. Photoinduced electron transfer in ruthenium-modified cytochrome c. Pure Appl. Chem. 1992;64:1257–1262. doi: 10.1351/pac199264091257. DOI
Gray H.B., Winkler J.R. Electron tunneling through proteins. Q. Rev. Biophys. 2003;36:341–372. doi: 10.1017/S0033583503003913. PubMed DOI
Kotlyar A.B., Borovok N., Hazani M. Photoinduced electron transfer in singly labeled thiouredopyrenetrisulfonate cytochrome c derivatives. Biochemistry. 1997;36:15828–15833. doi: 10.1021/bi9711801. PubMed DOI
Borovok N., Kotlyar A.B., Pecht I., Skov L.K., Farver O. Photoinduced electron transfer in singly labeled thiouredopyrenetrisulfonate azurin derivatives. FEBS Lett. 1999;457:277–282. doi: 10.1016/S0014-5793(99)01043-1. PubMed DOI
Kotlyar A.B., Borovok N., Khoroshyy P., Tenger K., Zimányi L. Redox photochemistry of thiouredopyrenetrisulfonate. Photochem. Photobiol. 2004;79:489–493. doi: 10.1562/RC-122R.1. PubMed DOI
Lange C., Hunte C. Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c. Proc. Natl. Acad. Sci. USA. 2002;99:2800–2805. doi: 10.1073/pnas.052704699. PubMed DOI PMC
Pelletier H., Kraut J. Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science. 1992;258:1748–1755. doi: 10.1126/science.1334573. PubMed DOI
Roberts V.A., Pique M.E. Definition of the interaction domain for cytochrome c on cytochrome c oxidase. III. Prediction of the docked complex by a complete, systematic search. J. Biol. Chem. 1999;274:38051–38060. doi: 10.1074/jbc.274.53.38051. PubMed DOI
Alvarez-Paggi D., Meister W., Kuhlmann U., Weidinger I., Tenger K., Zimányi L., Rákhely G., Hildebrandt P., Murgida D.H. Disentangling electron tunneling and protein dynamics of cytochrome c through a rationally designed surface mutation. J. Phys. Chem. B. 2013;117:6061–6068. doi: 10.1021/jp400832m. PubMed DOI
Kotlyar A.B., Borovok N., Hazani M., Szundi I., Einarsdóttir Ó. Photoinduced intracomplex electron transfer between cytochrome c oxidase and TUPS-modified cytochrome c. Eur. J. Biochem. 2000;267:5805–5809. doi: 10.1046/j.1432-1327.2000.01655.x. PubMed DOI
Szundi I., Cappuccio J.A., Borovok N., Kotlyar A.B., Einarsdóttir Ó. Photoinduced Electron Transfer in the Cytochrome c/Cytochrome c Oxidase Complex Using Thiouredopyrenetrisulfonate-Labeled Cytochrome c. Optical Multichannel Detection. Biochemistry. 2001;40:2186–2193. doi: 10.1021/bi002341v. PubMed DOI
Schkolnik G., Utesch T., Salewski J., Tenger K., Millo D., Kranich A., Zebger I., Schulz C., Zimányi L., Rákhely G., et al. Mapping local electric fields in proteins at biomimetic interfaces. Chem. Commun. 2012;48:70–72. doi: 10.1039/C1CC13186A. PubMed DOI
Ranieri A., Borsari M., Casalini S., Rocco G.D., Sola M., Bortolotti C.A., Battistuzzi G. How to Turn an Electron Transfer Protein into a Redox Enzyme for Biosensing. Molecules. 2021;26:4950. doi: 10.3390/molecules26164950. PubMed DOI PMC
Tenger K., Khoroshyy P., Leitgeb B., Rákhely G., Borovok N., Kotlyar A., Dolgikh D.A., Zimányi L. Complex kinetics of the electron transfer between the photoactive redox label TUPS and the heme of cytochrome c. J. Chem. Inf. Model. 2005;45:1520–1526. doi: 10.1021/ci050181u. PubMed DOI
Kotlyar A.B., Borovok N. Intramolecular oxidation of cytochrome c by covalently attached sulfoaromatic molecules. Biochim. Biophys. Acta-Bioenerg. 1997;1321:221–228. doi: 10.1016/S0005-2728(97)00058-3. PubMed DOI
Kotlyar A.B., Borovok N., Hazani M. Use of thiouredopyrenetrisulfonate photochemistry for driving electron transfer reactions in aqueous solutions. Biochemistry. 1997;36:15823–15827. doi: 10.1021/bi9711792. PubMed DOI
Kotlyar A.B., Borovok N., Raviv S., Zimányi L., Gutman M. Fast Redox Perturbation of Aqueous Solution by Photoexcitation of Pyranine. Photochem. Photobiol. 1996;63:448–454. doi: 10.1111/j.1751-1097.1996.tb03068.x. DOI
Mori Y., Shinoda H., Nakano T., Kitagawa T. Formation and Decay Behaviors of Laser-Induced Transient Species from Pyrene Derivatives 1. Spectral Discrimination and Decay Mechanisms in Aqueous Solution. J. Phys. Chem. A. 2002;106:11743–11749. doi: 10.1021/jp020332l. DOI
Devault D. Quantum mechanical tunnelling in biological systems. Q. Rev. Biophys. 1980;13:387–564. doi: 10.1017/S003358350000175X. PubMed DOI
Marcus R.A., Sutin N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta-Rev. Bioenerg. 1985;811:265–322. doi: 10.1016/0304-4173(85)90014-X. DOI
Miyashita O., Okamura M.Y., Onuchic J.N. Interprotein electron transfer from cytochrome c2 to photosynthetic reaction center: Tunneling across an aqueous interface. Proc. Natl. Acad. Sci. USA. 2005;102:3558–3563. doi: 10.1073/pnas.0409600102. PubMed DOI PMC
Alvarez-Paggi D., Castro M.A., Tórtora V., Castro L., Radi R., Murgida D.H. Electrostatically Driven Second-Sphere Ligand Switch between High and Low Reorganization Energy Forms of Native Cytochrome c. J. Am. Chem. Soc. 2013;135:4389–4397. doi: 10.1021/ja311786b. PubMed DOI
Beratan D.N., Onuchic J.N., Hopfield J.J. Electron tunneling through covalent and noncovalent pathways in proteins. J. Chem. Phys. 1998;86:4488. doi: 10.1063/1.452723. DOI
Zimányi L., Sipos Á., Sarlós F., Nagypál R., Groma G.I. Machine-learning model selection and parameter estimation from kinetic data of complex first-order reaction systems. PLoS ONE. 2021;16:e0255675. doi: 10.1371/journal.pone.0255675. PubMed DOI PMC
Bortolotti C.A., Borsari M., Sola M., Chertkova R., Dolgikh D.A., Kotlyar A.B., Facci P. Orientation-Dependent Kinetics of Heterogeneous Electron Transfer for Cytochrome c Immobilized on Gold: Electrochemical Determination and Theoretical Prediction. J. Phys. Chem. C. 2007;111:12100–12105. doi: 10.1021/jp072813g. DOI
Pepelina T.Y., Chertkova R.V., Dolgikh D.A., Kirpichnikov M.P. The role of individual lysine residues of horse cytochrome c in the formation of reactive complexes with components of the respiratory chain. Russ. J. Bioorg. Chem. 2010;36:90–96. doi: 10.1134/S1068162010010097. PubMed DOI
Chertkova R.V., Brazhe N.A., Bryantseva T.V., Nekrasov A.N., Dolgikh D.A., Yusipovich A.I., Sosnovtseva O., Maksimov G.V., Rubin A.B., Kirpichnikov M.P. New insight into the mechanism of mitochondrial cytochrome c function. PLoS ONE. 2017;12:e0178280. doi: 10.1371/journal.pone.0178280. PubMed DOI PMC
Chertkova R.V., Sharonov G.V., Feofanov A.V., Bocharova O.V., Latypov R.F., Chernyak B.V., Arseniev A.S., Dolgikh D.A., Kirpichnikov M.P. Proapoptotic activity of cytochrome c in living cells: Effect of K72 substitutions and species differences. Mol. Cell. Biochem. 2008;314:85–93. doi: 10.1007/s11010-008-9768-7. PubMed DOI
Pepelina T.Y., Chertkova R.V., Ostroverkhova T.V., Dolgikh D.A., Kirpichnikov M.P., Grivennikova V.G., Vinogradov A.D. Site-directed mutagenesis of cytochrome c: Reactions with respiratory chain components and superoxide radical. Biochemistry. 2009;74:625–632. doi: 10.1134/S0006297909060066. PubMed DOI
Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987;166:368–379. doi: 10.1016/0003-2697(87)90587-2. PubMed DOI
Babul J., Stellwagen E. Participation of the Protein Ligands in the Folding of Cytochrome c. Biochemistry. 1972;11:1195–1200. doi: 10.1021/bi00757a013. PubMed DOI
Khoroshyy P., Dér A., Zimányi L. Effect of Hofmeister cosolutes on the photocycle of photoactive yellow protein at moderately alkaline pH. J. Photochem. Photobiol. B Biol. 2013;120:111–119. doi: 10.1016/j.jphotobiol.2012.12.014. PubMed DOI
Krekic S., Nagy D., Taneva S.G., Fábián L., Zimányi L., Dér A. Spectrokinetic characterization of photoactive yellow protein films for integrated optical applications. Eur. Biophys. J. 2019;48:465–473. doi: 10.1007/s00249-019-01353-8. PubMed DOI PMC
Heyes D.J., Quinn A.M., Cullis P.M., Lee M., Munro A.W., Scrutton N.S. Internal electron transfer in multi-site redox enzymes is accessed by laser excitation of thiouredopyrene-3,6,8-trisulfonate (TUPS) Chem. Commun. (Camb) 2009;7:1124–1126. doi: 10.1039/b820386e. PubMed DOI