Expression Analysis and Mutational Status of Histone Methyltransferase KMT2D at Different Upper Tract Urothelial Carcinoma Locations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34834500
PubMed Central
PMC8625702
DOI
10.3390/jpm11111147
PII: jpm11111147
Knihovny.cz E-zdroje
- Klíčová slova
- KMT2 family, KMT2D, UTUC, histone methylation, urothelial cancer,
- Publikační typ
- časopisecké články MeSH
The gene coding for histone methyltransferase KMT2D is found among the top mutated genes in upper tract urothelial carcinoma (UTUC); however, there is a lack of data regarding its association with clinicopathologic features as well as survival outcomes. Therefore, we aimed to investigate KMT2D expression, mutation patterns, and their utility as prognostic biomarkers in patients with UTUC. A single-center study was conducted on tumor specimens from 51 patients treated with radical nephroureterectomy (RNU). Analysis of KMT2D protein expression was performed using immunohistochemistry (IHC). Customized next-generation sequencing (NGS) was used to assess alterations in KMT2D exons. Cox regression was used to assess the relationship of KMT2D protein expression and mutational status with survival outcomes. KMT2D expression was increased in patients with a previous history of bladder cancer (25% vs. 0%, p = 0.02). The NGS analysis of KMT2D exons in 27 UTUC tumors revealed a significant association between pathogenic KMT2D variants and tumor location (p = 0.02). Pathogenic KMT2D variants were predominantly found in patients with non-pelvic or multifocal tumors (60% vs. 14%), while the majority of patients with a pelvic tumor location (81% vs. 20%) did not harbor pathogenic KMT2D alterations. Both IHC and NGS analyses of KMT2D failed to detect a statistically significant association between KMT2D protein or KMT2D gene alteration status and clinical variables such as stage/grade of the disease or survival outcomes (all p > 0.05). KMT2D alterations and protein expression were associated with UTUC features such as multifocality, ureteral location, and previous bladder cancer. While KMT2D protein expression and KMT2D mutational status do not seem to have prognostic value in UTUC, they appear to add information to improve clinical decision-making regarding the type of therapy.
Department of Pathology Medical University of Vienna 1090 Vienna Austria
Department of Urology 2nd Faculty of Medicine Charles University 150 06 Prague Czech Republic
Department of Urology Comprehensive Cancer Center Medical University of Vienna 1090 Vienna Austria
Department of Urology University of Texas Southwestern Dallas TX 75390 USA
Department of Urology Weill Cornell Medical College New York NY 10065 USA
Institute for Urology and Reproductive Health Sechenov University 119435 Moscow Russia
Karl Landsteiner Institute of Urology and Andrology 1010 Vienna Austria
Zobrazit více v PubMed
Lughezzani G., Jeldres C., Isbarn H., Sun M., Shariat S.F., Alasker A., Pharand D., Widmer H., Arjane P., Graefen M., et al. Nephroureterectomy and segmental ureterectomy in the treatment of invasive upper tract urothelial carcinoma: A population-based study of 2299 patients. Eur. J. Cancer. 2009;45:3291–3297. doi: 10.1016/j.ejca.2009.06.016. PubMed DOI
Rink M., Ehdaie B., Cha E.K., Green D.A., Karakiewicz P.I., Babjuk M., Margulis V., Raman J.D., Svatek R.S., Fajkovic H., et al. Stage-specific impact of tumor location on oncologic outcomes in patients with upper and lower tract urothelial carcinoma following radical surgery. Eur. Urol. 2012;62:677–684. doi: 10.1016/j.eururo.2012.02.018. PubMed DOI
Rouprêt M., Hupertan V., Seisen T., Colin P., Xylinas E., Yates D.R., Fajkovic H., Lotan Y., Raman J.D., Zigeuner R., et al. Prediction of cancer specific survival after radical nephroureterectomy for upper tract urothelial carcinoma: Development of an optimized postoperative nomogram using decision curve analysis. J. Urol. 2013;189:1662–1669. doi: 10.1016/j.juro.2012.10.057. PubMed DOI
Rouprêt M., Babjuk M., Burger M., Compérat E., Cowan N.C., Gontero P., Liedberg F., Masson-Lecomte A., Mostafid A.H., Palou J., et al. European Association of Urology Guidelines. European Association of Urology; Arnhem, The Netherlands: 2021. EAU Guidelines on Upper Urinary Tract Urothelial Carcinoma 2021. PubMed
Favaretto R.L., Shariat S.F., Savage C., Godoy G., Chade D.C., Kaag M., Bochner B.H., Coleman J., Dalbagni G. Combining imaging and ureteroscopy variables in a preoperative multivariable model for prediction of muscle-invasive and non-organ confined disease in patients with upper tract urothelial carcinoma. BJU Int. 2012;109:77–82. doi: 10.1111/j.1464-410X.2011.10288.x. PubMed DOI PMC
Favaretto R.L., Shariat S.F., Chade D.C., Godoy G., Adamy A., Kaag M., Bochner B.H., Coleman J., Dalbagni G. The effect of tumor location on prognosis in patients treated with radical nephroureterectomy at Memorial Sloan-Kettering Cancer Center. Eur. Urol. 2010;58:574–580. doi: 10.1016/j.eururo.2010.07.003. PubMed DOI PMC
Chromecki T.F., Cha E.K., Fajkovic H., Margulis V., Novara G., Scherr D.S., Lotan Y., Raman J.D., Kassouf W., Bensalah K., et al. The impact of tumor multifocality on outcomes in patients treated with radical nephroureterectomy. Eur. Urol. 2012;61:245–253. doi: 10.1016/j.eururo.2011.09.017. PubMed DOI
Mori K., Janisch F., Mostafaei H., Lysenko I., Kimura S., Egawa S., Shariat S.F. Prognostic value of preoperative blood-based biomarkers in upper tract urothelial carcinoma treated with nephroureterectomy: A systematic review and meta-analysis. Urologic Oncology: Seminars and Original Investigations. 2020;Volume 38:315–333. PubMed
Hassler M.R., Bray F., Catto J.W.F., Grollman A.P., Hartmann A., Margulis V., Matin S.F., Roupret M., Sfakianos J.P., Shariat S.F., et al. Molecular Characterization of Upper Tract Urothelial Carcinoma in the Era of Next-generation Sequencing: A Systematic Review of the Current Literature. Eur. Urol. 2020;78:209–220. doi: 10.1016/j.eururo.2020.05.039. PubMed DOI
Egger G., Liang G., Aparicio A., Jones P. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–463. doi: 10.1038/nature02625. PubMed DOI
Fagan R.J., Dingwall A.K. COMPASS Ascending: Emerging clues regarding the roles of MLL3/KMT2C and MLL2/KMT2D proteins in cancer. Cancer Lett. 2019;458:56–65. doi: 10.1016/j.canlet.2019.05.024. PubMed DOI PMC
Froimchuk E., Jang Y., Ge K. Histone H3 lysine 4 methyltransferase KMT2D. Gene. 2017;627:337–342. doi: 10.1016/j.gene.2017.06.056. PubMed DOI PMC
Li R., Du Y., Chen Z., Xu D., Lin T., Jin S., Wang G., Liu Z., Lu M., Chen X., et al. Macroscopic somatic clonal expansion in morphologically normal human urothelium. Science. 2020;370:82–89. doi: 10.1126/science.aba7300. PubMed DOI
Dawkins J.B.N., Wang J., Maniati E., Heward J.A., Koniali L., Kocher H.M., Martin S.A., Chelala C., Balkwill F.R., Fitzgibbon J., et al. Reduced expression of histone methyltransferases KMT2C and KMT2D correlates with improved outcome in pancreatic ductal adenocarcinoma. Cancer Res. 2016;76:4861–4871. doi: 10.1158/0008-5472.CAN-16-0481. PubMed DOI PMC
do A. Rabello D., da S. Ferreira V.D.A., Berzoti-Coelho M.G., Burin S.M., Magro C.L., da C. Cacemiro M., Simões B.P., Saldanha-Araujo F., Castro F.A., Pittella-Silva F. MLL2/KMT2D and MLL3/KMT2C expression correlates with disease progression and response to imatinib mesylate in chronic myeloid leukemia. Cancer Cell Int. 2018;18:1–10. doi: 10.1186/s12935-018-0523-1. PubMed DOI PMC
Bosgana P., Nikou S., Dimitrakopoulos F.-I., Logotheti S., Tzelepi V., Kalophonos C., Bravou V., Kourea E., Sampsonas F., Zolota V. H3K4 Methylation Status and Lysine Specific Methyltransferase KMT2C Expression Correlate with Prognosis in Lung Adenocarcinoma. Curr. Mol. Pharmacol. 2020 doi: 10.2174/1874467213999200831130739. PubMed DOI
Toska E., Osmanbeyoglu H.U., Castel P., Chan C., Hendrickson R.C., Elkabets M., Dickler M.N., Scaltriti M., Leslie C.S., Armstrong S.A., et al. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science. 2017;355:1324–1330. doi: 10.1126/science.aah6893. PubMed DOI PMC
Moss T.J., Qi Y., Xi L., Peng B., Kim T.B., Ezzedine N.E., Mosqueda M.E., Guo C.C., Czerniak B.A., Ittmann M., et al. Comprehensive Genomic Characterization of Upper Tract Urothelial Carcinoma. Eur. Urol. 2017;72:641–649. doi: 10.1016/j.eururo.2017.05.048. PubMed DOI
The Cancer Genome Atlas Research Network Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315–322. doi: 10.1038/nature12965. PubMed DOI PMC
Rink M., Fajkovic H., Cha E.K., Gupta A., Karakiewicz P.I., Chun F.K., Lotan Y., Shariat S.F. Death certificates are valid for the determination of cause of death in patients with upper and lower tract urothelial carcinoma. Eur. Urol. 2012;61:854–855. doi: 10.1016/j.eururo.2011.12.055. PubMed DOI
Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A method and server for predicting damaging missense mutations. Nat. Methods. 2010;7:248–249. doi: 10.1038/nmeth0410-248. PubMed DOI PMC
Choi Y., Chan A.P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31:2745–2747. doi: 10.1093/bioinformatics/btv195. PubMed DOI PMC
Rao R.C., Dou Y. Hijacked in cancer: The KMT2 (MLL) family of methyltransferases. Nat. Rev. Cancer. 2015;15:334–346. doi: 10.1038/nrc3929. PubMed DOI PMC
Milne T.A., Briggs S.D., Brock H.W., Martin M.E., Gibbs D., Allis C.D., Hess J.L. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell. 2002;10:1107–1117. doi: 10.1016/S1097-2765(02)00741-4. PubMed DOI
Herz H.-M., Hu D., Shilatifard A. Enhancer malfunction in cancer. Mol. Cell. 2014;53:859–866. doi: 10.1016/j.molcel.2014.02.033. PubMed DOI PMC
Audenet F., Isharwal S., Cha E.K., Donoghue M.T.A., Drill E.N., Ostrovnaya I., Pietzak E.J., Sfakianos J.P., Bagrodia A., Murugan P., et al. Clonal relatedness and mutational differences between upper tract and bladder urothelial carcinoma. Clin. Cancer Res. 2019;25:967–976. doi: 10.1158/1078-0432.CCR-18-2039. PubMed DOI PMC
Sfakianos J.P., Cha E.K., Iyer G., Scott S.N., Zabor E.C., Shah R.H., Ren Q., Bagrodia A., Kim P.H., Hakimi A.A., et al. Genomic Characterization of Upper Tract Urothelial Carcinoma. Eur. Urol. 2015;68:970–977. doi: 10.1016/j.eururo.2015.07.039. PubMed DOI PMC
De Lorenzis E., Albo G., Longo F., Bebi C., Boeri L., Montanari E. Current knowledge on genomic profiling of upper tract urothelial carcinoma. Genes. 2021;12:333. doi: 10.3390/genes12030333. PubMed DOI PMC
Yafi F.A., Novara G., Shariat S.F., Gupta A., Matsumoto K., Walton T.J., Fritsche H.-M., El-Hakim A., Trischler S., Martínez-Salamanca J.I., et al. Impact of tumour location versus multifocality in patients with upper tract urothelial carcinoma treated with nephroureterectomy and bladder cuff excision: A homogeneous series without perioperative chemotherapy. BJU Int. 2012;110:E7–E13. doi: 10.1111/j.1464-410X.2011.10792.x. PubMed DOI
Ouzzane A., Colin P., Xylinas E., Pignot G., Ariane M.M., Saint F., Hoarau N., Adam E., Azemar M.D., Bensadoun H., et al. Ureteral and multifocal tumours have worse prognosis than renal pelvic tumours in urothelial carcinoma of the upper urinary tract treated by nephroureterectomy. Eur. Urol. 2011;60:1258–1265. doi: 10.1016/j.eururo.2011.05.049. PubMed DOI
Zhang X., Bu R., Liu Z., Wu B., Bai S. Development and Validation of a Model for Predicting Intravesical Recurrence in Organ-confined Upper Urinary Tract Urothelial Carcinoma Patients after Radical Nephroureterectomy: A Retrospective Study in One Center with Long-term Follow-up. Pathol. Oncol. Res. 2020;26:1741–1748. doi: 10.1007/s12253-019-00748-4. PubMed DOI
Zhang P., Huang Y. Genomic alterations in KMT2 family predict outcome of immune checkpoint therapy in multiple cancers. J. Hematol. Oncol. 2021;14:39. doi: 10.1186/s13045-021-01050-0. PubMed DOI PMC
Wang J., Xiu J., Baca Y., Battaglin F., Arai H., Kawanishi N., Soni S., Zhang W., Millstein J., Salhia B., et al. Large-scale analysis of KMT2 mutations defines a distinctive molecular subset with treatment implication in gastric cancer. Oncogene. 2021;40:4894–4905. doi: 10.1038/s41388-021-01840-3. PubMed DOI
Wang G., Chow R.D., Zhu L., Bai Z., Ye L., Zhang F., Renauer P.A., Dong M.B., Dai X., Zhang X., et al. CRISPR-GEMM Pooled Mutagenic Screening Identifies KMT2D as a Major Modulator of Immune Checkpoint Blockade. Cancer Discov. 2020;10:1912–1933. doi: 10.1158/2159-8290.CD-19-1448. PubMed DOI PMC
Zhai X., Brownell J.E. Biochemical perspectives on targeting KMT2 methyltransferases in cancer. Trends Pharmacol. Sci. 2021;42:688–699. doi: 10.1016/j.tips.2021.05.002. PubMed DOI
Dhar S.S., Lee M.G. Cancer-epigenetic function of the histone methyltransferase KMT2D and therapeutic opportunities for the treatment of KMT2D-deficient tumors. Oncotarget. 2021;12:1296–1308. doi: 10.18632/oncotarget.27988. PubMed DOI PMC
Loriot Y., Necchi A., Park S.H., Garcia-Donas J., Huddart R., Burgess E., Fleming M., Rezazadeh A., Mellado B., Varlamov S., et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 2019;381:338–348. doi: 10.1056/NEJMoa1817323. PubMed DOI