Effect of the flavonoids quercetin and taxifolin on UVA-induced damage to human primary skin keratinocytes and fibroblasts
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_LF_2021_011
Univerzita Palackého v Olomouci
RVO 61989592
Univerzita Palackého v Olomouci
PubMed
34837635
DOI
10.1007/s43630-021-00140-9
PII: 10.1007/s43630-021-00140-9
Knihovny.cz E-zdroje
- Klíčová slova
- Flavonoids, Human skin fibroblasts, Human skin keratinocytes, Nuclear factor Nrf2, Oxidative stress, UVA radiation,
- MeSH
- fibroblasty MeSH
- flavonoidy * metabolismus MeSH
- keratinocyty MeSH
- kůže metabolismus MeSH
- lidé MeSH
- oxidační stres MeSH
- quercetin * analogy a deriváty farmakologie MeSH
- ultrafialové záření MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- flavonoidy * MeSH
- quercetin * MeSH
- taxifolin MeSH Prohlížeč
The ultraviolet (UV) part of solar radiation can permanently affect skin tissue. UVA photons represent the most abundant UV component and stimulate the formation of intracellular reactive oxygen species (ROS), leading to oxidative damage to various biomolecules. Several plant-derived polyphenols are known as effective photoprotective agents. This study evaluated the potential of quercetin (QE) and its structurally related flavonoid taxifolin (TA) to reduce UVA-caused damage to human primary dermal fibroblasts (NHDF) and epidermal keratinocytes (NHEK) obtained from identical donors. Cells pre-treated with QE or TA (1 h) were then exposed to UVA light using a solar simulator. Both flavonoids effectively prevented oxidative damage, such as ROS generation, glutathione depletion, single-strand breaks formation and caspase-3 activation in NHDF. These protective effects were accompanied by stimulation of Nrf2 nuclear translocation, found in non-irradiated and irradiated NHDF and NHEK, and expression of antioxidant proteins, such as heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 and catalase. For most parameters, QE was more potent than TA. On the other hand, TA demonstrated protection within the whole concentration range, while QE lost its protective ability at the highest concentration tested (75 μM), suggesting its pro-oxidative potential. In summary, QE and TA demonstrated UVA-protective properties in NHEK and NHDF obtained from identical donors. However, due to the in vitro phototoxic potential of QE, published elsewhere and discussed herein, further studies are needed to evaluate QE safety in dermatological application for humans as well as to confirm our results on human skin ex vivo and in clinical trials.
Zobrazit více v PubMed
Svobodová, A., Walterová, D., & Vostálová, J. (2006). Ultraviolet light-induced alteration to the skin. Biomedical Papers of the Faculty of Medicine of Palacký University, Olomouc Czech Republic, 150(1), 25–38. https://doi.org/10.5507/bp.2006.003 DOI
Gęgotek, A., & Skrzydlewska, E. (2015). The role of transcription factor Nrf2 in skin cells metabolism. Archives of Dermatological Research, 307(5), 385–396. https://doi.org/10.1007/s00403-015-1554-2 PubMed DOI PMC
Svobodová, A., & Vostálová, J. (2010). Solar radiation induced skin damage: Review of protective and preventive options. International Journal of Radiation Biology, 86(12), 999–1030. https://doi.org/10.3109/09553002.2010.501842 PubMed DOI
Saewan, N., & Jimtaisong, A. (2015). Natural products as photoprotection. Journal of Cosmetic Dermatology, 14(1), 47–63. https://doi.org/10.1111/jocd.12123 PubMed DOI
Andres, S., Pevny, S., Ziegenhagen, R., Bakhiya, N., Schäfer, B., Hirsch-Ernst, K. I., & Lampen, A. (2018). Safety aspects of the use of quercetin as a dietary supplement. Molecular Nutrition & Food Research, 62(1), 1. https://doi.org/10.1002/mnfr.201700447 DOI
D’Andrea, G. (2015). Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 106, 256–271. https://doi.org/10.1016/j.fitote.2015.09.018 PubMed DOI
Zhu, X., Li, N., Wang, Y., Ding, L., Chen, H., Yu, Y., & Shi, X. (2017). Protective effects of quercetin on UVB irradiation-induced cytotoxicity through ROS clearance in keratinocyte cells. Oncology Reports, 37(1), 209–218. https://doi.org/10.3892/or.2016.5217 PubMed DOI
Casagrande, R., Georgetti, S. R., Verri, W. A., Jr., Dorta, D. J., dos Santos, A. C., & Fonseca, M. J. (2006). Protective effect of topical formulations containing quercetin against UVB-induced oxidative stress in hairless mice. Journal of Photochemistry and Photobiology B: Biology, 84(1), 21–27. https://doi.org/10.1016/j.jphotobiol.2006.01.006 DOI
Vicentini, F. T., Simi, T. R., Del Ciampo, J. O., Wolga, N. O., Pitol, D. L., Iyomasa, M. M., Bentley, M. V., & Fonseca, M. J. (2008). Quercetin in w/o microemulsion: In vitro and in vivo skin penetration and efficacy against UVB-induced skin damages evaluated in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 69(3), 948–957. https://doi.org/10.1016/j.ejpb.2008.01.012 PubMed DOI
Choquenet, B., Couteau, C., Paparis, E., & Coiffard, L. J. (2008). Quercetin and rutin as potential sunscreen agents: Determination of efficacy by an in vitro method. Journal of Natural Products, 71(6), 1117–1118. https://doi.org/10.1021/np7007297 PubMed DOI
Erden Inal, M., & Kahraman, A. (2000). The protective effect of flavonol quercetin against ultraviolet a induced oxidative stress in rats. Toxicology, 154(1–3), 21–29. https://doi.org/10.1016/s0300-483x(00)00268-7 PubMed DOI
Erden Inal, M., Kahraman, A., & Köken, T. (2001). Beneficial effects of quercetin on oxidative stress induced by ultraviolet A. Clinical and Experimental Dermatology, 26(6), 536–539. https://doi.org/10.1046/j.1365-2230.2001.00884.x PubMed DOI
Kahraman, A., & Erden Inal, M. (2002). Protective effects of quercetin on ultraviolet A light-induced oxidative stress in the blood of rat. Journal of Applied Toxicology, 22(5), 303–309. https://doi.org/10.1002/jat.863 PubMed DOI
Maini, S., Fahlman, B. M., & Krol, E. S. (2015). Flavonols protect against UV radiation-induced thymine dimer formation in an artificial skin mimic. Journal of Pharmacy and Pharmaceutical Sciences, 18(4), 600–615. https://doi.org/10.18433/j34w39 PubMed DOI
Kimura, S., Warabi, E., Yanagawa, T., Ma, D., Itoh, K., Ishii, Y., Kawachi, Y., & Ishii, T. (2009). Essential role of Nrf2 in keratinocyte protection from UVA by quercetin. Biochemical and Biophysical Research Communications, 387(1), 109–114. https://doi.org/10.1016/j.bbrc.2009.06.136 PubMed DOI
Dall’Acqua, S., Miolo, G., Innocenti, G., & Caffieri, S. (2012). The photodegradation of quercetin: Relation to oxidation. Molecules, 17(8), 8898–8907. https://doi.org/10.3390/molecules17088898 PubMed DOI PMC
Minner, F., Herphelin, F., & Poumay, Y. (2010). Study of epidermal differentiation in human keratinocytes cultured in autocrine conditions. Methods in Molecular Biology, 585, 71–82. https://doi.org/10.1007/978-1-60761-380-0_6 PubMed DOI
Pivodová, V., Franková, J., Galandáková, A., & Ulrichová, J. (2015). In vitro AuNPs’ cytotoxicity and their effect on wound healing. Nanobiomedicine (Rij), 2, 7. https://doi.org/10.5772/61132 DOI
RajnochováSvobodová, A., Zálešák, B., Biedermann, D., Ulrichová, J., & Vostálová, J. (2016). Phototoxic potential of silymarin and its bioactive components. Journal of Photochemistry and Photobiology B: Biology, 156, 61–68. https://doi.org/10.1016/j.jphotobiol.2016.01.011 DOI
RajnochováSvobodová, A., Gabrielová, E., Michaelides, L., Kosina, P., Ryšavá, A., Ulrichová, J., Zálešák, B., & Vostálová, J. (2018). UVA-photoprotective potential of silymarin and silybin. Archives of Dermatological Research, 310(5), 413–424. https://doi.org/10.1007/s00403-018-1828-6 DOI
Ryšavá, A., Čížková, K., Franková, J., Roubalová, L., Ulrichová, J., Vostálová, J., Vrba, J., Zálešák, B., & RajnochováSvobodová, A. (2020). Effect of UVA radiation on the Nrf2 signalling pathway in human skin cells. Journal of Photochemistry and Photobiology B: Biology, 209, 111948. https://doi.org/10.1016/j.jphotobiol.2020.111948 DOI
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262 PubMed DOI PMC
Rajnochová Svobodová, A., Ryšavá, A., Psotová, M., Kosina, P., Zálešák, B., Ulrichová, J., & Vostálová, J. (2017). The phototoxic potential of the flavonoids, taxifolin and quercetin. Photochemistry and Photobiology, 93(5), 1240–1247. https://doi.org/10.1111/php.12755 PubMed DOI
Hatahet, T., Morille, M., Hommoss, A., Devoisselle, J. M., Müller, R. H., & Bégu, S. (2016). Quercetin topical application, from conventional dosage forms to nanodosage forms. European Journal of Pharmaceutics and Biopharmaceutics, 108, 41–53. https://doi.org/10.1016/j.ejpb.2016.08.011 PubMed DOI
Svobodová, A., Walterová, D., & Psotová, J. (2006). Influence of silymarin and its flavonolignans on H(2)O(2)-induced oxidative stress in human keratinocytes and mouse fibroblasts. Burns, 32(8), 973–979. https://doi.org/10.1016/j.burns.2006.04.004 PubMed DOI
Živković, L., Bajić, V., Topalović, D., Bruić, M., & Spremo-Potparević, B. (2019). Antigenotoxic effects of biochaga and dihydroquercetin (taxifolin) on H PubMed DOI PMC
Chaiprasongsuk, A., Onkoksoong, T., Pluemsamran, T., Limsaengurai, S., & Panich, U. (2016). Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biology, 8, 79–90. https://doi.org/10.1016/j.redox.2015.12.006 PubMed DOI
Ryšavá, A., Vostálová, J., & RajnochováSvobodová, A. (2021). Effect of ultraviolet radiation on the Nrf2 signalling pathway in skin cells. International Journal of Radiation Biology. https://doi.org/10.1080/09553002.2021.1962566 PubMed DOI
Zhao, Y., Zhang, C. F., Rossiter, H., Eckhart, L., König, U., Karner, S., Mildner, M., Bochkov, V. N., Tschachler, E., & Gruber, F. (2013). Autophagy is induced by UVA and promotes removal of oxidized phospholipids and protein aggregates in epidermal keratinocytes. Journal of Investigative Dermatology, 133(6), 1629–1637. https://doi.org/10.1038/jid.2013.26 DOI
Applegate, L. A., Noël, A., Vile, G., Frenk, E., & Tyrrell, R. M. (1995). Two genes contribute to different extents to the heme oxygenase enzyme activity measured in cultured human skin fibroblasts and keratinocytes: Implications for protection against oxidant stress. Photochemistry and Photobiology, 61(3), 285–291. https://doi.org/10.1111/j.1751-1097.1995.tb03973.x PubMed DOI
Niggli, H. J., & Applegate, L. A. (1997). Glutathione response after UVA irradiation in mitotic and postmitotic human skin fibroblasts and keratinocytes. Photochemistry and Photobiology, 65(4), 680–684. https://doi.org/10.1111/j.1751-1097.1997.tb01911.x PubMed DOI
Kuang, H., Tang, Z., Zhang, C., Wang, Z., Li, W., Yang, C., Wang, Q., Yang, B., & Kong, A. N. (2017). Taxifolin activates the Nrf2 anti-oxidative stress pathway in mouse skin epidermal JB6 P+ cells through epigenetic modifications. International Journal of Molecular Sciences, 18(7), 1546. https://doi.org/10.3390/ijms18071546 DOI PMC
Xie, X., Feng, J., Kang, Z., Zhang, S., Zhang, L., Zhang, Y., Li, X., & Tang, Y. (2017). Taxifolin protects RPE cells against oxidative stress-induced apoptosis. Molecular Vision, 23, 520–528. PubMed PMC
Liang, L., Gao, C., Luo, M., Wang, W., Zhao, C., Zu, Y., Efferth, T., & Fu, Y. (2013). Dihydroquercetin (DHQ) induced HO-1 and NQO1 expression against oxidative stress through the Nrf2-dependent antioxidant pathway. Journal of Agricultural and Food Chemistry, 61(11), 2755–2761. https://doi.org/10.1021/jf304768p PubMed DOI
Islam, J., Shree, A., Vafa, A., Afzal, S. M., & Sultana, S. (2021). Taxifolin ameliorates benzo[a]pyrene-induced lung injury possibly via stimulating the Nrf2 signalling pathway. International Immunopharmacology, 96, 107566. https://doi.org/10.1016/j.intimp.2021.107566 PubMed DOI
Wang, W., Ma, B. L., Xu, C. G., & Zhou, X. J. (2020). Dihydroquercetin protects against renal fibrosis by activating the Nrf2 pathway. Phytomedicine, 69, 153185. https://doi.org/10.1016/j.phymed.2020.153185 PubMed DOI
Chan, K., & Kan, Y. W. (1999). Nrf2 is essential for protection against acute pulmonary injury in mice. Proceedings of the National Academy of Sciences of the United States of America, 96(22), 12731–12736. https://doi.org/10.1073/pnas.96.22.12731 PubMed DOI PMC
Shindo, Y., & Hashimoto, T. (1997). Time course of changes in antioxidant enzymes in human skin fibroblasts after UVA irradiation. Journal of Dermatological Science, 14(3), 225–232. https://doi.org/10.1016/s0923-1811(96)00578-6 PubMed DOI
RajnochováSvobodová, A., Galandáková, A., Šianská, J., Doležal, D., Ulrichová, J., & Vostálová, J. (2011). Acute exposure to solar simulated ultraviolet radiation affects oxidative stress-related biomarkers in skin, liver and blood of hairless mice. Biological and Pharmaceutical Bulletin, 34(4), 471–479. https://doi.org/10.1248/bpb.34.471 DOI
Rice-Evans, C. A., & Miller, N. J. (1996). Antioxidant activities of flavonoids as bioactive components of food. Biochemical Society Transactions, 24(3), 790–795. https://doi.org/10.1042/bst0240790 PubMed DOI
Gažák, R., Svobodová, A., Psotová, J., Sedmera, P., Přikrylová, V., Walterová, D., & Křen, V. (2004). Oxidised derivatives of silybin and their antiradical and antioxidant activity. Bioorganic & Medicinal Chemistry, 12(21), 5677–5687. https://doi.org/10.1016/j.bmc.2004.07.064 DOI
Osorio, E., Pérez, E. G., Areche, C., Ruiz, L. M., Cassels, B. K., Flórez, E., & Tiznado, W. (2013). Why is quercetin a better antioxidant than taxifolin? Theoretical study of mechanisms involving activated forms. Journal of Molecular Modeling, 19(5), 2165–2172. https://doi.org/10.1007/s00894-012-1732-5 PubMed DOI
Metodiewa, D., Jaiswal, A. K., Cenas, N., Dickancaité, E., & Segura-Aguilar, J. (1999). Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radical Biology and Medicine, 26(1–2), 107–116. https://doi.org/10.1016/s0891-5849(98)00167-1 PubMed DOI
Boots, A. W., Kubben, N., Haenen, G. R., & Bast, A. (2003). Oxidized quercetin reacts with thiols rather than with ascorbate: Implication for quercetin supplementation. Biochemical and Biophysical Research Communications, 308(3), 560–565. https://doi.org/10.1016/s0006-291x(03)01438-4 PubMed DOI
Li, C., Zhang, W. J., Choi, J., & Frei, B. (2016). Quercetin affects glutathione levels and redox ratio in human aortic endothelial cells not through oxidation but formation and cellular export of quercetin-glutathione conjugates and upregulation of glutamate-cysteine ligase. Redox Biology, 9, 220–228. https://doi.org/10.1016/j.redox.2016.08.012 PubMed DOI PMC
Boots, A. W., Li, H., Schins, R. P., Duffin, R., Heemskerk, J. W., Bast, A., & Haenen, G. R. (2007). The quercetin paradox. Toxicology and Applied Pharmacology, 222(1), 89–96. https://doi.org/10.1016/j.taap.2007.04.004 PubMed DOI
Vásquez-Espinal, A., Yañez, O., Osorio, E., Areche, C., García-Beltrán, O., Ruiz, L. M., Cassels, B. K., & Tiznado, W. (2019). Theoretical study of the antioxidant activity of quercetin oxidation products. Frontiers in Chemistry, 27, 818. https://doi.org/10.3389/fchem.2019.00818 DOI
Kosina, P., Paloncýová, M., Rajnochová Svobodová, A., Zálešák, B., Biedermann, D., Ulrichová, J., & Vostálová, J. (2018). Dermal delivery of selected polyphenols from Silybum marianum. Theoretical and experimental study. Molecules, 24(1), 61. https://doi.org/10.3390/molecules24010061 DOI PMC
Filipe, P., Silva, J. N., Haigle, J., Freitas, J. P., Fernandes, A., Santus, R., & Morlière, P. (2005). Contrasting action of flavonoids on phototoxic effects induced in human skin fibroblasts by UVA alone or UVA plus cyamemazine, a phototoxic neuroleptic. Photochemical & Photobiological Sciences, 4(5), 420–428. https://doi.org/10.1039/b416811a DOI
Tian, R., Yang, Z., Lu, N., & Peng, Y. Y. (2019). Quercetin, but not rutin, attenuated hydrogen peroxide-induced cell damage via heme oxygenase-1 induction in endothelial cells. Archives of Biochemistry and Biophysics, 676, 108157. https://doi.org/10.1016/j.abb.2019.108157 PubMed DOI