Metal accumulation in relation to size and body condition in an all-alien species community
Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
34851482
PubMed Central
PMC8986740
DOI
10.1007/s11356-021-17621-0
PII: 10.1007/s11356-021-17621-0
Knihovny.cz E-resources
- Keywords
- Bioaccumulation, Ecotoxicology, Environmental pollution, Fish, Freshwater ecosystems, Fulton condition factor, Metals,
- MeSH
- Water Pollutants, Chemical * analysis MeSH
- Ecosystem MeSH
- Environmental Monitoring methods MeSH
- Mercury * MeSH
- Catfishes * MeSH
- Metals, Heavy * analysis MeSH
- Introduced Species MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Water Pollutants, Chemical * MeSH
- Mercury * MeSH
- Metals, Heavy * MeSH
Metal pollution is one of the main environmental threats in freshwater ecosystems. Aquatic animals can accumulate these substances and transfer them across the food web, posing risks for both predators and humans. Accumulation patterns strongly vary depending on the location, species, and size (which in fish and crayfish is related to age) of individuals. Moreover, high metal concentrations can negatively affect animals' health. To assess the intraspecific relationship between metal accumulation and size and health (proxied by the body condition) of individuals, the concentration of 14 metals (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Se, Zn) was analyzed in six alien species from the highly anthropogenically altered Arno River (Central Italy): five fish (Alburnus alburnus, Pseudorasbora parva, Lepomis gibbosus, Ictalurus punctatus, and Silurus glanis) and one crayfish (Procambarus clarkii). We found that in P. clarkii, Cu was negatively related to size, as well as Al in L. gibbosus and Mg for adult I. punctatus. Positive size-dependent relationships were found for Hg in L. gibbosus, Fe in S. glanis, and Cr in juvenile I. punctatus. Only Co and Mg in S. glanis were found to negatively correlate with individual health. Since metal concentrations in animal tissue depend on trade-offs between uptake and excretion, the few significant results suggest different types of trade-offs across different species and age classes. However, only predatory fish species (L. gibbosus, I. punctatus, and S. glanis) presented significant relationships, suggesting that feeding habits are one of the primary drivers of metal accumulation.
See more in PubMed
Adams W, Blust R, Dwyer R, Mount D, Nordheim E, Rodriguez PH, Spry D. Bioavailability assessment of metals in freshwater environments: a historical review. Environ Toxicol Chem. 2020;39:48e59. doi: 10.1002/etc.4558. PubMed DOI PMC
Alhashemi AH, Karbassi A, Kiabi BH, Monavari SM, Sekhavatjou MS. Bioaccumulation of trace elements in different tissues of three commonly available fish species regarding their gender, gonadosomatic index, and condition factor in a wetland ecosystem. Environ Monit Assess. 2012;184:1865e1878. doi: 10.1007/s10661-011-2085-8. PubMed DOI
Arlinghaus R, Cooke SJ, Lyman J, Policansky D, Schwab A, Suski C, Sutton SG, Thorstad EB. Understanding the complexity of catch-and-release in recreational fishing: an integrative synthesis of global knowledge from historical, ethical, social, and biological perspectives. Reviews Fish Sci. 2007;15:75–167. doi: 10.1080/10641260601149432. DOI
Balzani P, Gozlan RE, Haubrock PJ. Overlapping niches between two co-occurring invasive fish: the topmouth gudgeon Pseudorasbora parva and the common bleak Alburnus alburnus. J Fish Biol. 2020;97:1385–1392. doi: 10.1111/jfb.14499. PubMed DOI
Balzani P, Haubrock PJ, Russo F, Kouba A, Haase P, Veselý L, Masoni A, Tricarico E. Combining metal and stable isotope analyses to disentangle contaminant transfer in a freshwater community dominated by alien species. Environ Pollut. 2021;268:115781. doi: 10.1016/j.envpol.2020.115781. PubMed DOI
Barak NA-E, Mason CF. Mercury, cadmium and lead in eels and roach: the effects of size, season and locality on metal concentrations in flesh and liver. Sci Total Environ. 1990;92:249–256. doi: 10.1016/0048-9697(90)90334-Q. PubMed DOI
Bini G, Chelazzi G. Acclimatable cardiac and ventilatory responses to copper in the freshwater crayfish Procambarus clarkii. Comp Biochem Physiol C Toxicol Pharmacol. 2006;144:235–241. doi: 10.1016/j.cbpc.2006.08.014. PubMed DOI
Bissattini AM, Haubrock PJ, Buono V, Balzani P, Borgianni N, Stellati L, Inghilesi AF, Tancioni L, Martinoli M, Tricarico E, Vignoli L. Trophic structure of a pond community dominated by an invasive alien species: insights from stomach content and stable isotope analyses. Aquat Conserv Mar Freshwat Ecosyst. 2021;31:948–963. doi: 10.1002/aqc.3530. DOI
Cerri J, Ciappelli A, Lenuzza A, Zaccaroni M, Nocita A. Recreational angling as a vector of freshwater invasions in Central Italy: perceptions and prevalence of illegal fish restocking. Knowl Manag Aquat Ecosyst. 2018;419:38. doi: 10.1051/kmae/2018028. DOI
Charette T, Rosabal M, Amyot M. Mapping metal (Hg, As, Se), lipid and protein levels within fish muscular system in two fish species (Striped Bass and Northern Pike) Chemosphere. 2021;265:129036. doi: 10.1016/j.chemosphere.2020.129036. PubMed DOI
Cortecci G, Boschetti T, Dinelli E, Cidu R, Podda F, Doveri M. Geochemistry of trace elements in surface waters of the Arno River Basin, northern Tuscany, Italy. Appl Geochem. 2009;24:1005–1022. doi: 10.1016/j.apgeochem.2009.03.002. DOI
De Santis V, Volta P (2021) Spoiled for choice during cold season? habitat use and potential impacts of the invasive Silurus glanis L. in a deep, large and oligotrophic lake (Lake Maggiore, North Italy). 10.20944/preprints202108.0476.v1
De Wet LM, Schoonbee HJ, De Wet LPD, Wild AJB (1994) Bioaccumulation of metals by southern mouthbrooder, Pseudocrenilabrus philander (Weber, 1897) from a mine polluted impoundment. Water SA 20: 119–126. 10.10520/AJA03784738_1910
Dinelli E, Cortecci G, Lucchini F, Zantedeschi E. Sources of major and trace elements in the stream sediments of the Arno river catchment (northern Tuscany, Italy) Geochem J. 2005;39:531–545. doi: 10.2343/geochemj.39.531. DOI
Donadt C, Cooke CA, Graydon JA, Poesch MS. Mercury bioaccumulation in stream fish from an agriculturally-dominated watershed. Chemosphere. 2021;262:128059. doi: 10.1016/j.chemosphere.2020.128059. PubMed DOI
Donato R, Rollandin M, Favaro L, Ferrarese A, Pessani D, Ghia D. Habitat use and population structure of the invasive red swamp crayfish Procambarus clarkii (Girard, 1852) in a protected area in northern Italy. Knowl Manag Aquat Ecosyst. 2018;419:12. doi: 10.1051/kmae/2018002. DOI
Dragun Z, Raspor B, Podrug M. The influence of the season and biotic factors on the cytosolic metal concentrations in the gills of the European chub (Leuciscus cephalus L.) Chemosphere. 2007;69:911–919. doi: 10.1016/j.chemosphere.2007.05.069. PubMed DOI
Dragun Z, Tepić N, Krasnići N, Teskeredžić E. Accumulation of metals relevant for agricultural contamination in gills of European chub (Squalius cephalus) Environ Sci Pollut Res. 2016;23:16802–16815. doi: 10.1007/s11356-016-6830-y. PubMed DOI
El Haj Y, Bohn S, Souza MM. Tolerance of native and invasive bivalves under herbicide and metal contamination: an ex vivo approach. Environ Sci Pollut Res. 2019;26:31198e31206. doi: 10.1007/s11356-019-06256-x. PubMed DOI
Endo T, Kaneko S, Igari K, Kanou K, Nakazato R, Kamei R, Usui S, Hyakunari W. Feeding characteristics of the channel catfish Ictalurus punctatus in the littoral zone of Lake Kitaura, Ibaraki Prefecture, Japan. Aquac Sci. 2015;63:49e58. doi: 10.11233/aquaculturesci.63.49. DOI
European Commission, 2008. Commission Regulation (EC) No 629/2008 of the European Parliament and of the Council of 2 July 2008 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union L 173, 6e9
Farkas A, Salánki J, Specziár A. Age- and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Res. 2003;37:959–964. doi: 10.1016/S0043-1354(02)00447-5. PubMed DOI
Fonseca AR, Fernandes LS, Fontainhas-Fernandes A, Monteiro SM, Pacheco FAL. The impact of freshwater metal concentrations on the severity of histopathological changes in fish gills: a statistical perspective. Sci Total Environ. 2017;599:217–226. doi: 10.1016/j.scitotenv.2017.04.196. PubMed DOI
Froese R. Cube law, condition factor and weight–length relationships: history, meta-analysis and recommendations. J Appl Ichthyol. 2006;22:241–253. doi: 10.1111/j.1439-0426.2006.00805.x. DOI
Funes V, Alhama J, Navas JI, López-Barea J, Peinado J. Ecotoxicological effects of metal pollution in two mollusc species from the Spanish South Atlantic littoral. Environ Pollut. 2006;139:214–223. doi: 10.1016/j.envpol.2005.05.016. PubMed DOI
Gall JE, Boyd RS, Rajakaruna N. Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess. 2015;187:187e201. doi: 10.1007/s10661-015-4436-3. PubMed DOI
Ghanthimathi S, Aminah A, Salmijah S, Ujang T, NurulIzzah A. Comparison of microwave assisted acid digestion methods for ICP-MS determination of total arsenic in fish tissue. Sains Malays. 2012;41:1557e1564.
Ghosn M, Mahfouz C, Chekri R, Khalaf G, Guérin T, Jitaru P, Amara R. Seasonal and spatial variability of trace elements in livers and muscles of three fish species from the Eastern Mediterranean. Environ Sci Pollut Res. 2020;27:12428–12438. doi: 10.1007/s11356-020-07794-5. PubMed DOI
Greani S, Lourkisti R, Berti L, Marchand B, Giannettini J, Santini J, Quilichini Y. Effect of chronic arsenic exposure under environmental conditions on bioaccumulation, oxidative stress, and antioxidant enzymatic defenses in wild trout Salmo trutta (Pisces, Teleostei) Ecotoxicology. 2017;26:930–941. doi: 10.1007/s10646-017-1822-3. PubMed DOI
Griffini O, Bao ML, Barbieri C, Burrini D, Pantani F. Occurrence of pesticides in the Arno river and in potable water—a survey of the period 1992–1995. Bull Environ Contam Toxicol. 1997;59:202–209. doi: 10.1007/s001289900465. PubMed DOI
Has-Schön E, Bogut I, Vuković R, Galović D, Bogut A, Horvatić J. Distribution and age-related bioaccumulation of lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As) in tissues of common carp (Cyprinus carpio) and European catfish (Sylurus glanis) from the Buško Blato reservoir (Bosnia and Herzegovina) Chemosphere. 2015;135:289–296. doi: 10.1016/j.chemosphere.2015.04.015. PubMed DOI
Haubrock PJ, Balzani P, Johovic I, Inghilesi AF, Nocita A, Tricarico E. The diet of the alien channel catfish Ictalurus punctatus in the River Arno (Central Italy) Aquat Invasions. 2018;13:575e585. doi: 10.3391/ai.2018.13.4.14. DOI
Haubrock PJ, Balzani P, Azzini M, Inghilesi AF, Veselý L, Guo W, Tricarico E. Shared histories of co-evolution may affect trophic interactions in a freshwater community dominated by alien species. Front Ecol Evol. 2019;7:355. doi: 10.3389/fevo.2019.00355. DOI
Haubrock PJ, Balzani P, Criado A, Inghilesi AF, Tricarico E, Monteoliva AP. Predicting the effects of reintroducing a native predator (European eel, Anguilla anguilla) into a freshwater community dominated by alien species using a multidisciplinary approach. Manag Biol Invasions. 2019;10:171e191. doi: 10.3391/mbi.2019.10.1.11. DOI
Haubrock PJ, Azzini M, Balzani P, Inghilesi AF, Tricarico E. When alien catfish meet—resource overlap between the North American Ictalurus punctatus and immature European Silurus glanis in the Arno River (Italy) Ecol Freshw Fish. 2020;29:4–17. doi: 10.1111/eff.12481. DOI
Haubrock PJ, Pilotto F, Innocenti G, Cianfanelli S, Haase P. Two centuries for an almost complete community turnover from native to non-native species in a riverine ecosystem. Glob Change Biol. 2021;27:606–623. doi: 10.1111/gcb.15442. PubMed DOI
Haubrock PJ, Balzani P, Matsuzaki SIS, Tarkan AS, Kourantidou M, Haase P. Spatio-temporal niche plasticity of a freshwater invader as a harbinger of impact variability. Sci Total Environ. 2021;777:145947. doi: 10.1016/j.scitotenv.2021.145947. PubMed DOI
Haubrock PJ, Balzani P, Hundertmark I, Cuthbert RN. Spatial and size variation in dietary niche of a non-native freshwater fish. Ichthyology & Herpetology. 2021;109:501–506. doi: 10.1643/i2020099. DOI
Haubrock PJ, Cuthbert RN, Tricarico E, Diagne C, Courchamp F, Gozlan RE. The recorded economic costs of alien invasive species in Italy. NeoBiota. 2021;67:247–266. doi: 10.3897/neobiota.67.57747. DOI
Javed M, Usmani N. An overview of the adverse effects of heavy metal contamination on fish health. Proc Natl Acad Sci India B. 2019;89:389–403. doi: 10.1007/s40011-017-0875-7. DOI
Jezierska B, Witeska M (2001) Accumulation of metals in fish. In: Metal Toxicity to Fish. Widawnictwo Akademii Podlaskiej, Siedlce, pp. 51–106
Jia Y, Wang L, Qu Z, Wang C, Yang Z. Effects on heavy metal accumulation in freshwater fishes: species, tissues, and sizes. Environ Sci Pollut Res. 2017;24:9379e9386. doi: 10.1007/s11356-017-8606-4. PubMed DOI
Jiang X, Wang J, Pan B, Li D, Wang Y, Liu X. Assessment of heavy metal accumulation in freshwater fish of Dongting Lake, China: effects of feeding habits, habitat preferences and body size. J Environ Sci. 2022;112:355–365. doi: 10.1016/j.jes.2021.05.004. PubMed DOI
Jovičić K, Nikolić DM, Višnjić-Jeftić Ž, Đikanović V, Skorić S, Stefanović SM, Lenhardt M, Hegediš A, Krpo-Ćetković J, Jarić I. Mapping differential elemental accumulation in fish tissues: assessment of metal and trace element concentrations in wels catfish (Silurus glanis) from the Danube River by ICP-MS. Environ Sci Pollut Res. 2015;22:3820–3827. doi: 10.1007/s11356-014-3636-7. PubMed DOI
Kaus A, Schäffer M, Karthe D, Büttner O, von Tümpling W, Borchardt D. Regional patterns of heavy metal exposure and contamination in the fish fauna of the Kharaa River basin (Mongolia) Reg Environ Change. 2017;17:2023–2037. doi: 10.1007/s10113-016-0969-4. DOI
Kouba A, Buřič M, Kozák P. Bioaccumulation and effects of heavy metals in crayfish: a review. Water Air Soil Pollut. 2010;211:5–16. doi: 10.1007/s11270-009-0273-8. DOI
Kourantidou M, Cuthbert RN, Haubrock PJ, Novoa A, Taylor NG, Leroy B, Capinha C, Renault D, Angulo E, Diagne C, Courchamp F. Economic costs of invasive alien species in the Mediterranean basin. NeoBiota. 2021;67:427–458. doi: 10.3897/neobiota.67.58926. DOI
Léopold EN, Jung MC, Emmanuel EG. Accumulation of metals in three fish species from the Yaounde Municipal Lake in Cameroon. Environ Monit Assess. 2015;187:1–12. doi: 10.1007/s10661-015-4781-2. PubMed DOI
Liu J-L, Xu X-R, Ding Z-H, Peng J-X, Jin M-H, Wang Y-S, Hong Y-G, Yue W-Z. Heavy metals in wild marine fish from South China Sea: levels, tissue-and species-specific accumulation and potential risk to humans. Ecotoxicology. 2015;24:1583–1592. doi: 10.1007/s10646-015-1451-7. PubMed DOI
Liu Y, Liu G, Yuan Z, Liu H, Lam PK. Heavy metals (As, Hg and V) and stable isotope ratios (d13C and d15N) in fish from Yellow River Estuary, China. Sci Total Environ. 2018;613:462e471. doi: 10.1016/j.scitotenv.2017.09.088. PubMed DOI
Liu J, Liu R, Yang Z, Kuikka S. Quantifying and predicting ecological and human health risks for binary heavy metal pollution accidents at the watershed scale using Bayesian Networks. Environ Pollut. 2021;269:116125. doi: 10.1016/j.envpol.2020.116125. PubMed DOI
Low K, Zain SM, Abas MR, Mohd A. Evaluation of closed vessel microwave digestion of fish muscle with various solvent combinations using fractional factorial design. ASM Sci J. 2009;3:71e76.
Luczynska J, Luczynski MJ, Paszczyk B (2016) Assessment of mercury in muscles, liver and gills of marine and freshwater fish. J Elemen 21. 10.5601/jelem.2015.20.2.879
Madgett AS, Yates K, Webster L, McKenzie C, Moffat CF. The concentration and biomagnification of trace metals and metalloids across four trophic levels in a marine food web. Mar Pollut Bull. 2021;173:112929. doi: 10.1016/j.marpolbul.2021.112929. PubMed DOI
Maranhão P, Marques JC, Madeira V. Copper concentrations in soft tissues of the red swamp crayfish Procambarus clarkii (Girard, 1852), after exposure to a range of dissolved copper concentrations. Freshwater Crayfish. 1995;10:282–286.
Markert BA, Breure AM, Zechmeister HG (2003). Bioindicators and biomonitors. Principles, concepts and applications. Elsevier, Science Ltd, Netherlands
McKinley A, Johnston EL. Impacts of contaminant sources on marine fish abundance and species richness: a review and meta-analysis of evidence from the field. Mar Ecol Prog Ser. 2010;420:175–191. doi: 10.3354/meps08856. DOI
Merciai R, Guasch H, Kumar A, Sabater S, García-Berthou E. Trace metal concentration and fish size: variation among fish species in a Mediterranean river. Ecotoxicol Environ Saf. 2014;107:154–161. doi: 10.1016/j.ecoenv.2014.05.006. PubMed DOI
Mozsár A, Boros G, Sály P, Antal L, Nagy SA. Relationship between Fulton’s condition factor and proximate body composition in three freshwater fish species. J Appl Ichthyol. 2015;31:315–320. doi: 10.1111/jai.12658. DOI
Nash RD, Valencia AH, Geffen AJ. The origin of Fulton’s condition factor-setting the record straight. Fisheries. 2006;31:236–238.
Nentwig W, Bacher S, Kumschick S, Pyšek P, Vilà M. More than “100 worst” alien species in Europe. Biol Invasions. 2018;20:1611–1621. doi: 10.1007/s10530-017-1651-6. DOI
Nisi B, Vaselli O, Buccianti A, Silva SR. Sources of nitrate in the Arno River waters: constraints from d 15 N and d 18 O. GeoActa. 2005;4:13–24.
Noël L, Chekri R, Millour S, Merlo M, Leblanc J-C, Guérin T. Distribution and relationships of As, Cd, Pb and Hg in freshwater fish from five French fishing areas. Chemosphere. 2013;90:1900–1910. doi: 10.1016/j.chemosphere.2012.10.015. PubMed DOI
Olesik JW. Elemental analysis using ICP-OES and ICP/MS. Anal Chem. 1991;63:12Ae21A. doi: 10.1021/ac00007a005. DOI
Pacetti T, Castelli G, Bresci E, Caporali E. Water values: participatory water ecosystem services assessment in the Arno River basin, Italy. Water Resour Manage. 2020;34:4527–4544. doi: 10.1007/s11269-020-02684-4. DOI
R Core Team (2020). R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/. Accessed 2 Feb 2021
Rajkowska M, Protasowicki M. Distribution of metals (Fe, Mn, Zn, Cu) in fish tissues in two lakes of different trophy in Northwestern Poland. Environ Monit Assess. 2013;185:3493–3502. doi: 10.1007/s10661-012-2805-8. PubMed DOI PMC
Rakocevic J, Sukovic D, Maric D. Distribution and relationships of eleven trace elements in muscle of six fish species from Skadar Lake (Montenegro) Turkish J Fish Aquat Sci. 2018;18:647–657. doi: 10.4194/1303-2712-v18_5_01. DOI
Reddy PS, Tuberty SR, Fingerman M. Effects of cadmium and mercury on ovarian maturation in the red swamp crayfish, Procambarus clarkii. Ecotoxicol Environ Saf. 1997;37:62–65. doi: 10.1006/eesa.1997.1523. PubMed DOI
Sassd SM (2011) Heavy metals accumulation in common fish species inhabiting Lake Edku and their relation to lipid content and liver size. In Proceedings of the 4th Global Fisheries and Aquaculture Research Conference, the Egyptian International Center for Agriculture, Giza, Egypt, 3–5 October 2011 (pp. 139–150). Massive Conferences and Trade Fairs
Schloesser RW, Fabrizio MC. Condition indices as surrogates of energy density and lipid content in juveniles of three fish species. Trans Am Fish Soc. 2017;146:1058–1069. doi: 10.1080/00028487.2017.1324523. DOI
Soedarini B, Klaver L, Roessink I, Widianarko B, Van Straalen NM, Van Gestel CAM. Copper kinetics and internal distribution in the marbled crayfish (Procambarus sp.) Chemosphere. 2012;87:333–338. doi: 10.1016/j.chemosphere.2011.12.017. PubMed DOI
Soto DX, Benito J, Gacia E, García-Berthou E, Catalan J. Trace metal accumulation as complementary dietary information for the isotopic analysis of complex food webs. Methods Ecol Evol. 2016;7:910e918. doi: 10.1111/2041-210X.12546. DOI
Squadrone S, Prearo M, Brizio P, Gavinelli S, Pellegrino M, Scanzio T, Guarise S, Benedetto A, Abete MC. Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurusglanis) from Italian Rivers. Chemosphere. 2013;90:358e365. doi: 10.1016/j.chemosphere.2012.07.028. PubMed DOI
Tenji D, Micic B, Sipos S, Miljanovic B, Teodorovic I, Kaisarevic S. Fish biomarkers from a different perspective: evidence of adaptive strategy of Abramis brama (L.) to chemical stress. Environ Sci Eur. 2020;32:1–15. doi: 10.1186/s12302-020-00316-7. DOI
Waheed R, El Asely AM, Bakery H, El-Shawarby R, Abuo-Salem M, Abdel-Aleem N, Malhat F, Khafaga A, Abdeen A. Thermal stress accelerates mercury chloride toxicity in Oreochromis niloticus via up-regulation of mercury bioaccumulation and HSP70 mRNA expression. Sci Total Environ. 2020;718:137326. doi: 10.1016/j.scitotenv.2020.137326. PubMed DOI
Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J. Package ‘corrplot’. Statistician. 2017;56:e24.
Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res. 2016;23:8244–8259. doi: 10.1007/s11356-016-6333-x. PubMed DOI
Yang Q, Li Z, Lu X, Duan Q, Huang L, Bi J. A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ. 2018;642:690e700. doi: 10.1016/j.scitotenv.2018.06.068. PubMed DOI
Yang C, Zhang Z, Liu Y, Shan B, Yu W, Li H, Sun D. Heavy metal pollution and stable isotope ratios (δ13C and δ15N) in marine organisms from the Northern Beibu Gulf, South China Sea. Mar Pollut Bull. 2021;166:112230. doi: 10.1016/j.marpolbul.2021.112230. PubMed DOI
Yevtushenko NY. Accumulation of microelements in organs and tissues of fishes differing in feeding specialization under conditions of cultivation in fishponds with heated water. Hydrobiol J. 1998;34:112–124. doi: 10.1615/HydrobJ.v34.i4-5.110. DOI
Yi Y-J, Zhang S-H. Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River. Environ Sci Pollut Res. 2012;19:3989–3996. doi: 10.1007/s11356-012-0840-1. PubMed DOI
Zhao D, Zhang X, Li X, Ru S, Wang Y, Yin J, Liu D. Oxidative damage induced by copper in testis of the red swamp crayfish Procambarus clarkii and its underlying mechanisms. Aquat Toxicol. 2019;207:120–131. doi: 10.1016/j.aquatox.2018.12.006. PubMed DOI
Zhao D, Zhang X, Liu D, Ru S. Cu accumulation, detoxification and tolerance in the red swamp crayfish Procambarus clarkii. Ecotoxicol Environ Saf. 2019;175:201–207. doi: 10.1016/j.ecoenv.2019.03.031. PubMed DOI
Zeitoun MM, Mehana EE. Impact of water pollution with heavy metals on fish health: overview and updates. Glob Vet. 2014;12:219–231. doi: 10.5829/idosi.gv.2014.12.02.82219. DOI
Zrnčić S, Oraić D, Ćaleta M, Mihaljević Ž, Zanella D, Bilandžić N. Biomonitoring of heavy metals in fish from the Danube River. Environ Monit Assess. 2013;185:1189–1198. doi: 10.1007/s10661-012-2625-x. PubMed DOI
Zuccato E, Castiglioni S, Bagnati R, Chiabrando C, Grassi P, Fanelli R. Illicit drugs, a novel group of environmental contaminants. Water Res. 2008;42:961–968. doi: 10.1016/j.watres.2007.09.010. PubMed DOI