Geometrical model of lobular structure and its importance for the liver perfusion analysis
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34855778
PubMed Central
PMC8638901
DOI
10.1371/journal.pone.0260068
PII: PONE-D-21-02788
Knihovny.cz E-resources
- MeSH
- Models, Anatomic * MeSH
- Models, Biological MeSH
- Liver anatomy & histology blood supply MeSH
- Humans MeSH
- Microcirculation MeSH
- Proof of Concept Study MeSH
- Perfusion MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
A convenient geometrical description of the microvascular network is necessary for computationally efficient mathematical modelling of liver perfusion, metabolic and other physiological processes. The tissue models currently used are based on the generally accepted schematic structure of the parenchyma at the lobular level, assuming its perfect regular structure and geometrical symmetries. Hepatic lobule, portal lobule, or liver acinus are considered usually as autonomous functional units on which particular physiological problems are studied. We propose a new periodic unit-the liver representative periodic cell (LRPC) and establish its geometrical parametrization. The LRPC is constituted by two portal lobulae, such that it contains the liver acinus as a substructure. As a remarkable advantage over the classical phenomenological modelling approaches, the LRPC enables for multiscale modelling based on the periodic homogenization method. Derived macroscopic equations involve so called effective medium parameters, such as the tissue permeability, which reflect the LRPC geometry. In this way, mutual influences between the macroscopic phenomena, such as inhomogeneous perfusion, and the local processes relevant to the lobular (mesoscopic) level are respected. The LRPC based model is intended for its use within a complete hierarchical model of the whole liver. Using the Double-permeability Darcy model obtained by the homogenization, we illustrate the usefulness of the LRPC based modelling to describe the blood perfusion in the parenchyma.
See more in PubMed
Romanelli RG, Stasi C. Advancements in Diagnosis and Therapy of Liver Cirrhosis. Curr Drug Targets. 2016;17(15):1804–1817. doi: 10.2174/1389450117666160613101413 PubMed DOI
Marrone G, Shah VH, Gracia-Sancho J. Sinusoidal communication in liver fibrosis and regeneration. J Hepatol. 2016;65(3):608–617. doi: 10.1016/j.jhep.2016.04.018 PubMed DOI PMC
Kwon YJ, Lee KD, Choi D. Clinical implications of advances in liver regeneration. Clin Mol Hepatol. 2015;21(1):7–13. doi: 10.3350/cmh.2015.21.1.7 PubMed DOI PMC
Clavien PA, Petrowsky H, DeOliveira ML, Graf R. Strategies for safer liver surgery and partial liver transplantation. New Engl. J. Med. 2007;356(15):1545–1559. doi: 10.1056/NEJMra065156 PubMed DOI
Fausto N, Campbell JS, Riehle KJ. Liver regeneration. J Hepatol. 2012;57(3):692–694. doi: 10.1016/j.jhep.2012.04.016 PubMed DOI
Lodewick TM, Arnoldussen CW, Lahaye MJ, van Mierlo KM, et al.. Fast and accurate liver volumetry prior to hepatectomy. HPB (Oxford). 2016;8(9):764–772. doi: 10.1016/j.hpb.2016.06.009 PubMed DOI PMC
Debbaut C, Vierendeels J, Casteleyn C, Cornillie P, Van Loo D, Simoens P, et al.. Perfusion characteristics of the human hepatic microcirculation based on three-dimensional reconstructions and computational fluid dynamic analysis. Journal of biomechanical engineering. 2012;134(1):011003. doi: 10.1115/1.4005545 PubMed DOI
Rani H, Sheu TW, Chang T, Liang P. Numerical investigation of non-Newtonian microcirculatory blood flow in hepatic lobule. Journal of biomechanics. 2006;39(3):551–563. doi: 10.1016/j.jbiomech.2004.11.029 PubMed DOI
Piergiovanni M, Bianchi E, Capitani G, Li Piani I, Ganzer L, Guidotti LG, et al.. Microcirculation in the murine liver: a computational fluid dynamic model based on 3D reconstruction from in vivo microscopy. Journal of Biomechanics. 2017;63:125–134. doi: 10.1016/j.jbiomech.2017.08.011 PubMed DOI
Rezania V, Marsh R, Coombe D, Tuszynski JA. A physiologically-based flow network model for hepatic drug elimination I: regular lattice lobule model. Theor Biol Med Model. 2013;10(52). doi: 10.1186/1742-4682-10-52 PubMed DOI PMC
Rezania V Coombe D, Tuszynski JA. A physiologically-based flow network model for hepatic drug elimination III: 2D/3D DLA lobule models. Theor Biol Med Model. 2016;13(1):1–22. doi: 10.1186/s12976-016-0034-5 PubMed DOI PMC
Christ B, Dahmen U, Herrmann K-H, König M, Reichenbach JR, Ricken T, et al.. Computational Modeling in Liver Surgery. Frontiers in Physiology. 2017;8(1):906. doi: 10.3389/fphys.2017.00906 PubMed DOI PMC
Ho H, Zhang E. Virtual Lobule Models Are the Key for Multiscale Biomechanical and Pharmacological Modeling for the Liver. Frontiers in Physiology. 2020;11(52):1061. doi: 10.3389/fphys.2020.01061 PubMed DOI PMC
Ma R, Hunter P, Cousins W, Ho H,Bartlett A, Safaei S. Anatomically based simulation of hepatic perfusion in the human liver. International Journal for Numerical Methods in Biomedical Engineering. 2019;35(9):e3229. doi: 10.1002/cnm.3229 PubMed DOI
Lorente S, Hautefeuille M, Sanchez-Cedillo A. The liver, a functionalized vascular structure. Sci Rep. 2020;10(1):1–10. doi: 10.1038/s41598-020-73208-8 PubMed DOI PMC
White D, Coombe D, Rezania V, Tuszynski J. Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures. PLOS ONE. 2016;11(9):1–24. doi: 10.1371/journal.pone.0162215 PubMed DOI PMC
Rohan E, Lukeš V, Jonášová A. Modeling of the contrast-enhanced perfusion test in liver based on the multi-compartment flow in porous media. J Math Biol. 2018;77(1):421–454. doi: 10.1007/s00285-018-1209-y PubMed DOI
Köppl T, Vidotto E, Wohlmuth B. A 3D-1D coupled blood flow and oxygen transport model to generate microvascular networks. I Jour Num Meth Biomed Engrg. 2020;36(10):e3386. PubMed
Fu X, Sluka JP, Clendenon SG, Dunn KW, Wang Z, Klaunig JE, et al.. Modeling of xenobiotic transport and metabolism in virtual hepatic lobule models. PLOS ONE. 2018;13(9):1–34. doi: 10.1371/journal.pone.0198060 PubMed DOI PMC
Mosharaf-Dehkordi M. A fully coupled porous media and channels flow approach for simulation of blood and bile flow through the liver lobules. Computer Methods in Biomechanics and Biomedical Engineering. 2019;22(9):901–915. doi: 10.1080/10255842.2019.1601180 PubMed DOI
Ahmadi-Badejani R, Mosharaf-Dehkordi M, Ahmadikia H. An image-based geometric model for numerical simulation of blood perfusion within the liver lobules. Computer Methods in Biomechanics and Biomedical Engineering. 2020;23(13):987–1004. doi: 10.1080/10255842.2020.1782389 PubMed DOI
Ricken T, Dahmen U, Dirsch O. A biphasic model for sinusoidal liver perfusion remodeling after outflow obstruction. Biomechanics and modeling in mechanobiology. 2010;9(4):435–450. doi: 10.1007/s10237-009-0186-x PubMed DOI
Siggers JH, Leungchavaphongse K, Ho CH, Repetto R. Mathematical model of blood and interstitial flow and lymph production in the liver. Biomechanics and modeling in mechanobiology. 2014;13(2):363–378. doi: 10.1007/s10237-013-0516-x PubMed DOI PMC
Lettmann KA, Hardtke-Wolenski M. The importance of liver microcirculation in promoting autoimmune hepatitis via maintaining an inflammatory cytokine milieu–A mathematical model study. Journal of theoretical biology. 2014;348:33–46. doi: 10.1016/j.jtbi.2014.01.016 PubMed DOI
Höhme S, Hengstler JG, Brulport M, Schäfer M, Bauer A, Gebhardt R, et al.. Mathematical modelling of liver regeneration after intoxication with CCl4. Chemico-Biological Interactions. 2007;168(1):74–93. doi: 10.1016/j.cbi.2007.01.010 PubMed DOI
Drasdo D, Höhme S, Hengstler JG. How predictive quantitative modelling of tissue organisation can inform liver disease pathogenesis. Journal of hepatology. 2014;61(4):951–956. doi: 10.1016/j.jhep.2014.06.013 PubMed DOI
Debbaut C, Vierendeels J, Siggers JH, Repetto R, Monbaliu D, Segers P. A 3D porous media liver lobule model: the importance of vascular septa and anisotropic permeability for homogeneous perfusion. Computer methods in biomechanics and biomedical engineering. 2014;17(12):1295–1310. doi: 10.1080/10255842.2012.744399 PubMed DOI
Peyrounette M,Davit Y, Quintard M, Lorthois S. Multiscale modelling of blood flow in cerebral microcirculation: Details at capillary scale control accuracy at the level of the cortex. PLOS ONE. 2018;13(1):1–35. doi: 10.1371/journal.pone.0189474 PubMed DOI PMC
Paton RC, Nwana H, Shave M, Bench-Capon T. Computing at the tissue/organ Level. Towards a Practice of Autonomous Systems. 2003; 411–420.
Rappaport A, Borowy Z, Lougheed W, Lotto W. Subdivision of hexagonal liver lobules into a structural and functional unit. Role in hepatic physiology and pathology. The anatomical record. 1954;119(1):11–33. doi: 10.1002/ar.1091190103 PubMed DOI
Matsumoto T, Kawakami M. The unit-concept of hepatic parenchyma–a re-examination based on angioarchitectural studies. Acta pathologica japonica. 1982;32:285–314. PubMed
McCuskey RS. Morphological mechanisms for regulating blood flow through hepatic sinusoids. Liver International. 2000;20(1):3–7. PubMed
Cioranescu D, Damlamian A, Griso G. The periodic unfolding method in homogenization. Journal on Mathematical Analysis (SIAM). 2008;40(4):1585–1620. doi: 10.1137/080713148 DOI
Arbogast T, Douglas J, Hornung U. Derivation of the double porosity model of single phase flow via homogenization theory. Journal on Mathematical Analysis (SIAM). 1990;21(1):823–836. doi: 10.1137/0521046 DOI
Showalter RE, Visarraga DB. Double-diffusion models from a highly heterogeneous medium. Journal of Mathematical Analysis and Applications. 2004;295(1):191–210. doi: 10.1016/j.jmaa.2004.03.031 DOI
Rohan E, Cimrman R. Two-scale modeling of tissue perfusion problem using homogenization of dual porous media. Int J Multiscale Com. 2010;8(1):81–102. doi: 10.1615/IntJMultCompEng.v8.i1.70 DOI
Rohan E, Naili S, Cimrman R, Lemaire T. Multiscale modeling of a fluid saturated medium with double porosity: Relevance to the compact bone. Jour. Mech. Phys. Solids. 2012;60(1):857–881. doi: 10.1016/j.jmps.2012.01.013 DOI
Rohan E, Turjanicová J, Lukeš V. Multiscale modelling of liver perfusion. Proc. of 15th Int. Conf. on Computational Plasticity, COMPLAS 2019. Onate, D.R.J. et al.(Eds), CIMNE.
Rohan E, Turjanicová J, Lukeš V. Multiscale modelling and simulations of tissue perfusion using the Biot-Darcy-Brinkman model. To appear in Comp & Struct, 2021. doi: 10.1016/j.compstruc.2020.106404 DOI
Moreno R, Segers P, Debbaut C. Estimation of the Permeability Tensor of the Microvasculature of the Liver Through Fabric Tensors. Computational Biomechanics for Medicine. 2017;1(1):71–79. doi: 10.1007/978-3-319-54481-6_6 DOI
Rohan E, Turjanicová J, Lukeš V. Homogenization based modelling of the perfused liver tissue. Proc. of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM. 2018;1(1):870–881.
Debbaut C, Segers P, Cornillie P, Casteleyn C, Dierick M, Laleman W, et al.. Analyzing the human liver vascular architecture by combining vascular corrosion casting and micro-CT scanning: a feasibility study. J Anat. 2014;224(4):509–517. doi: 10.1111/joa.12156 PubMed DOI PMC
Geuzaine C, Remacle JF. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Num Meth Engrg. 2009;79(11):1309–1331. doi: 10.1002/nme.2579 DOI
Bonfiglio A, Leungchavaphongse K, Repetto R, Siggers JH. Mathematical modeling of the circulation in the liver lobule. Journal of biomechanical engineering. 2010;132(11):111011. doi: 10.1115/1.4002563 PubMed DOI
Ricken T, Werner D, Holzhütter H, König M, Dahmen U, Dirsch O. Modeling function–perfusion behavior in liver lobules including tissue, blood, glucose, lactate and glycogen by use of a coupled two-scale PDE–ODE approach. Biomechanics and modeling in mechanobiology. 2015;14(3):515–536. doi: 10.1007/s10237-014-0619-z PubMed DOI
Rohan E, Turjanicová J, Lukeš V. The Biot-Darcy-Brinkman model of flow in deformable double porous media; homogenization and numerical modelling. Comput Math Appl 2019;78:3044–66. doi: 10.1016/j.camwa.2019.04.004 DOI
Lukeš V, Rohan E. Homogenization of large deforming fluid-saturated porous structures. 2020; http://arxiv.org/abs/2012.03730.
Rohan E, Cimrman R, Lukeš V. Numerical modelling and homogenized constitutive law of large deforming fluid saturated heterogeneous solids. Computers & structures. 2006;84(17):1095–1114. doi: 10.1016/j.compstruc.2006.01.008 DOI
Rohan E, Lukeš V. Modeling nonlinear phenomena in deforming fluid-saturated porous media using homogenization and sensitivity analysis concepts. Applied Mathematics and Computation. 2015;267(1):583–595. doi: 10.1016/j.amc.2015.01.054 DOI
Guo L, Vardakis JC, Chou D, Ventikos Y. A multiple-network poroelastic model for biological systems and application to subject-specific modelling of cerebral fluid transport. International Journal of Engineering Science. 2020;147(1):103204. doi: 10.1016/j.ijengsci.2019.103204 DOI
Chou D, Vardakis JC, Ventikos Y. Multiscale Modelling for Cerebrospinal Fluid Dynamics: Multicompartmental Poroelacticity and the Role of AQP4. J. of Biosciences and Medicines. 2014;2(2):1–9. doi: 10.4236/jbm.2014.22001 DOI
figshare
10.6084/m9.figshare.17000119, 10.6084/m9.figshare.17000881