Titanium Application Increases Phosphorus Uptake Through Changes in Auxin Content and Root Architecture in Soybean (Glycine Max L.)

. 2021 ; 12 () : 743618. [epub] 20211111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34858450

Phosphorus (P) is an essential macronutrient needed for plant growth, development, and production. A deficiency of P causes a severe impact on plant development and productivity. Several P-based fertilizers are being used in agriculture but limited uptake of P by the plant is still a challenge to be solved. Titanium (Ti) application increases the nutrient uptake by affecting the root growth; however, the role of Ti in plant biology, specifically its application under low light and phosphorus stress, has never been reported. Therefore, a pot study was planned with foliar application of Ti (in a different concentration ranging from 0 to 1,000 mg L-1) under different light and P concentrations. The result indicated that under shade and low P conditions the foliar application of Ti in different concentrations significantly improves the plant growth parameters such as root length, root surface area, root dry matter, and shoot dry matters. The increase was observed to be more than 100% in shade and low P stressed soybean root parameter with 500 mg L-1 of Ti treatment. Ti was observed to improve the plant growth both in high P and low P exposed plants, but the improvement was more obvious in Low P exposed plants. Auxin concentration in stressed and healthy plant roots was observed to be slightly increased with Ti application. Ti application was also observed to decrease rhizosphere soil pH and boosted the antioxidant enzymatic activities with an enhancement in photosynthetic efficiency of soybean plants under shade and P stress. With 500 mg L-1 of Ti treatment, the photosynthetic rate was observed to improve by 45% under shade and P stressed soybean plants. Thus, this work for the first time indicates a good potential of Ti application in the low light and P deficient agricultural fields for the purpose to improve plant growth and development parameters.

Zobrazit více v PubMed

Abdel Latef A. A. H., Srivastava A. K., El-sadek M. S. A., Kordrostami M., Tran L. S. P. (2018). Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad. Dev. 29 1065–1073.

Alarcón M., Salguero J., Lloret P. G. (2019). Auxin modulated initiation of lateral roots is linked to pericycle cell length in maize. Front. Plant Sci. 10:11. 10.3389/fpls.2019.00011 PubMed DOI PMC

Boykov I. N., Shuford E., Zhang B. (2019). Nanoparticle titanium dioxide affects the growth and microRNA expression of switchgrass (Panicum virgatum). Genomics 111 450–456. 10.1016/j.ygeno.2018.03.002 PubMed DOI

Buettner K. M., Valentine A. M. (2012). Bioinorganic chemistry of titanium. Chem. Rev. 112, 1863–1881. 10.1021/cr1002886 PubMed DOI

Cigler P., Olejnickova J., Hruby M., Csefalvay L., Peterka J., Kuzel S. (2010). Interactions between iron and titanium metabolism in spinach: a chlorophyll fluorescence study in hydropony. J. Plant Physiol. 167 1592–1597. 10.1016/j.jplph.2010.06.021 PubMed DOI

Ding Z., Galván-Ampudia C. S., Demarsy E., Łangowski Ł, Kleine-Vehn J., Fan Y., et al. (2011). Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat. Cell Biol. 13 447–452. 10.1038/ncb2208 PubMed DOI

Farmer E. E., Mueller M. J. (2013). ROS-mediated lipid peroxidation and RES-activated signaling. Annu. Rev. Plant Biol. 64 429–450. 10.1146/annurev-arplant-050312-120132 PubMed DOI

Foyer C. H., Shigeoka S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 155 93–100. PubMed PMC

Frutos M., Pastor J., Martinez Sanchez F., Alcaraz C. (1996). Improvement of the nitrogen uptake induced by titanium (iv) leaf supply in nitrogen−stressed pepper seedlings. J. Plant Nutr. 19 771–783.

Fukushima A., Iwasa M., Nakabayashi R., Kobayashi M., Nishizawa T., Okazaki Y., et al. (2017). Effects of combined low glutathione with mild oxidative and low phosphorus stress on the metabolism of Arabidopsis thaliana. Front. Plant Sci. 8:1464. 10.3389/fpls.2017.01464 PubMed DOI PMC

Gohari G., Mohammadi A., Akbari A., Panahirad S., Dadpour M. R., Fotopoulos V., et al. (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci. Rep. 10:912. 10.1038/s41598-020-57794-1 PubMed DOI PMC

Guan L., Tayengwa R., Cheng Z. M., Peer W. A., Murphy A. S., Zhao M. (2019). Auxin regulates adventitious root formation in tomato cuttings. BMC Plant Biol. 19:435. 10.1186/s12870-019-2002-9 PubMed DOI PMC

Haghighi M., da Silva J. A. T. (2014). The effect of N-TiO 2 on tomato, onion, and radish seed germination. J. Crop Sci. Biotechnol. 17 221–227.

Haghighi M., Heidarian S., Da Silva J. A. T. (2012). The effect of titanium amendment in N-withholding nutrient solution on physiological and photosynthesis attributes and micronutrient uptake of tomato. Biol. Trace Elem. Res. 150 381–390. 10.1007/s12011-012-9481-y PubMed DOI

Huang H., Ullah F., Zhou D.-X., Yi M., Zhao Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 10:800. 10.3389/fpls.2019.00800 PubMed DOI PMC

Hussain S., Iqbal N., Brestic M., Raza M. A., Pang T., Langham D. R., et al. (2019a). Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. Sci. Total Environ. 658 626–637. 10.1016/j.scitotenv.2018.12.182 PubMed DOI

Hussain S., Iqbal N., Raza M. A., Khan M. N., Ahmed S., Rahman T., et al. (2019b). Distribution and effects of ionic titanium application on energy partitioning and quantum yield of soybean under different light conditions. Photosynthetica 57 572–580.

Hussain S., Pang T., Iqbal N., Shafiq I., Skalicky M., Brestic M., et al. (2020). Acclimation strategy and plasticity of different soybean genotypes in intercropping. Funct. Plant Biol. 47 592–610. 10.1071/FP19161 PubMed DOI

Iqbal N., Hussain S., Raza M. A., Yang C.-Q., Safdar M. E., Brestic M., et al. (2019). Drought tolerance of soybean (Glycine max L. Merr.) by improved photosynthetic characteristics and an efficient antioxidant enzyme activities under a split-root system. Front. Physiol. 10:786. 10.3389/fphys.2019.00786 PubMed DOI PMC

Khan M. (2016). Nano-titanium dioxide (nano-TiO2) mitigates NaCl stress by enhancing antioxidative enzymes and accumulation of compatible solutes in tomato (Lycopersicon esculentum Mill.). J. Plant Sci. 11 1–11.

Lepš J., Šmilauer P. (2003). Multivariate Analysis of Ecological Data Using CANOCO. Cambridge: Cambridge University Press.

Li C.-X., Fan Y.-F., Luan W., Dai Y., Wang M.-X., Wei C.-M., et al. (2018). Titanium ions inhibit the bacteria in vase solutions of freshly cut Gerbera jamesonii and extend the flower longevity. Microb. Ecol. 77 967–979. 10.1007/s00248-018-1273-2 PubMed DOI

Li T., Zhang Y., Dai J., Dong H., Kong X. (2019). High plant density inhibits vegetative branching in cotton by altering hormone contents and photosynthetic production. Field Crops Res. 230 121–131.

Martínez-Andújar C., Ruiz-Lozano J. M., Dodd I. C., Albacete A., Pérez-Alfocea F. (2017). Hormonal and nutritional features in contrasting rootstock-mediated tomato growth under low-phosphorus nutrition. Front. Plant Sci. 8:533. 10.3389/fpls.2017.00533 PubMed DOI PMC

Maruyama H., Wasaki J. (2017). “Transgenic approaches for improving phosphorus use efficiency in plants,” in Plant Macronutrient Use Efficiency, eds Hossain M. A., Kamiya T., Burritt D. J., Tran L.-S. P., Fujiwara T. (Amsterdam: Elsevier; ), 323–338.

Raliya R., Nair R., Chavalmane S., Wang W.-N., Biswas P. (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7 1584–1594. 10.1039/c5mt00168d PubMed DOI

Shah T., Latif S., Saeed F., Ali I., Ullah S., Alsahli A. A., et al. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. J. King Saud Univ. Sci. 33:101207.

Skupień K., Oszmiański J. (2007). Influence of titanium treatment on antioxidants content and antioxidant activity of strawberries. Acta Sci. Pol. Technol. Aliment. 6 83–93.

Tumburu L., Andersen C. P., Rygiewicz P. T., Reichman J. R. (2015). Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants. Environ. Toxicol. Chem. 34 70–83. 10.1002/etc.2756 PubMed DOI

Tyburski J., Dunajska K., Tretyn A. (2010). A role for redox factors in shaping root architecture under phosphorus deficiency. Plant Signal. Behav. 5 64–66. 10.4161/psb.5.1.10199 PubMed DOI PMC

Wang H., Chen W., Sinumvayabo N., Li Y., Han Z., Tian J., et al. (2020). Phosphorus deficiency induces root proliferation and Cd absorption but inhibits Cd tolerance and Cd translocation in roots of Populus × euramericana. Ecotoxicol. Environ. Safety 204:111148. 10.1016/j.ecoenv.2020.111148 PubMed DOI

Wei J., Zou Y., Li P., Yuan X. (2020). Titanium dioxide nanoparticles promote root growth by interfering with auxin pathways in Arabidopsis thaliana. Phyton 89 883–891.

Zahra Z., Arshad M., Rafique R., Mahmood A., Habib A., Qazi I. A., et al. (2015). Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. J. Agric. Food Chem. 63 6876–6882. 10.1021/acs.jafc.5b01611 PubMed DOI

Zahra Z., Maqbool T., Arshad M., Badshah M. A., Choi H.-K., Hur J. (2019). Changes in fluorescent dissolved organic matter and their association with phytoavailable phosphorus in soil amended with TiO2 nanoparticles. Chemosphere 227 17–25. 10.1016/j.chemosphere.2019.03.189 PubMed DOI

Zahra Z., Waseem N., Zahra R., Lee H., Badshah M. A., Mehmood A., et al. (2017). Growth and metabolic responses of rice (Oryza sativa L.) cultivated in phosphorus-deficient soil amended with TiO2 nanoparticles. J. Agric. Food Chem. 65 5598–5606. 10.1021/acs.jafc.7b01843 PubMed DOI

Zhang Y., Liang Y., Zhao X., Jin X., Hou L., Shi Y., et al. (2019). Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. Agronomy 9:733.

Zheng L., Hong F., Lu S., Liu C. (2005). Effect of nano-TiO 2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 104 83–91. 10.1385/BTER:104:1:083 PubMed DOI

Zhou T., Wang L., Li S., Gao Y., Du Y., Zhao L., et al. (2019). Interactions between light intensity and phosphorus nutrition affect the P uptake capacity of maize and soybean seedling in a low light intensity area. Front. Plant Sci. 10:183. 10.3389/fpls.2019.00183 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...