Development and Validation of the 5-SENSE Score to Predict Focality of the Seizure-Onset Zone as Assessed by Stereoelectroencephalography

. 2022 Jan 01 ; 79 (1) : 70-79.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid34870697

IMPORTANCE: Stereoelectroencephalography (SEEG) has become the criterion standard in case of inconclusive noninvasive presurgical epilepsy workup. However, up to 40% of patients are subsequently not offered surgery because the seizure-onset zone is less focal than expected or cannot be identified. OBJECTIVE: To predict focality of the seizure-onset zone in SEEG, the 5-point 5-SENSE score was developed and validated. DESIGN, SETTING, AND PARTICIPANTS: This was a monocentric cohort study for score development followed by multicenter validation with patient selection intervals between February 2002 to October 2018 and May 2002 to December 2019. The minimum follow-up period was 1 year. Patients with drug-resistant epilepsy undergoing SEEG at the Montreal Neurological Institute were analyzed to identify a focal seizure-onset zone. Selection criteria were 2 or more seizures in electroencephalography and availability of complete neuropsychological and neuroimaging data sets. For validation, patients from 9 epilepsy centers meeting these criteria were included. Analysis took place between May and July 2021. MAIN OUTCOMES AND MEASURES: Based on SEEG, patients were grouped as focal and nonfocal seizure-onset zone. Demographic, clinical, electroencephalography, neuroimaging, and neuropsychology data were analyzed, and a multiple logistic regression model for developing a score to predict SEEG focality was created and validated in an independent sample. RESULTS: A total of 128 patients (57 women [44.5%]; median [range] age, 31 [13-58] years) were analyzed for score development and 207 patients (97 women [46.9%]; median [range] age, 32 [16-70] years) were analyzed for validation. The score comprised the following 5 predictive variables: focal lesion on structural magnetic resonance imaging, absence of bilateral independent spikes in scalp electroencephalography, localizing neuropsychological deficit, strongly localizing semiology, and regional ictal scalp electroencephalography onset. The 5-SENSE score had an optimal mean (SD) probability cutoff for identifying a focal seizure-onset zone of 37.6 (3.5). Area under the curve, specificity, and sensitivity were 0.83, 76.3% (95% CI, 66.7-85.8), and 83.3% (95% CI, 72.30-94.1), respectively. Validation showed 76.0% (95% CI, 67.5-84.0) specificity and 52.3% (95% CI, 43.0-61.5) sensitivity. CONCLUSIONS AND RELEVANCE: High specificity in score development and validation confirms that the 5-SENSE score predicts patients where SEEG is unlikely to identify a focal seizure-onset zone. It is a simple and useful tool for assisting clinicians to reduce unnecessary invasive diagnostic burden on patients and overutilization of limited health care resources.

Komentář v

PubMed

Zobrazit více v PubMed

Wiebe S, Blume WT, Girvin JP, Eliasziw M; Effectiveness and Efficiency of Surgery for Temporal Lobe Epilepsy Study Group . A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345(5):311-318. doi:10.1056/NEJM200108023450501 PubMed DOI

Dwivedi R, Ramanujam B, Chandra PS, et al. . Surgery for drug-resistant epilepsy in children. N Engl J Med. 2017;377(17):1639-1647. doi:10.1056/NEJMoa1615335 PubMed DOI

Lüders HO, Najm I, Nair D, Widdess-Walsh P, Bingman W. The epileptogenic zone: general principles. Epileptic Disord. 2006;8(suppl 2):S1-S9. PubMed

Rosenow F, Lüders H. Presurgical evaluation of epilepsy. Brain. 2001;124(Pt 9):1683-1700. doi:10.1093/brain/124.9.1683 PubMed DOI

Frauscher B. Localizing the epileptogenic zone. Curr Opin Neurol. 2020;33(2):198-206. doi:10.1097/WCO.0000000000000790 PubMed DOI

Vakharia VN, Duncan JS, Witt J-A, Elger CE, Staba R, Engel J Jr. Getting the best outcomes from epilepsy surgery. Ann Neurol. 2018;83(4):676-690. doi:10.1002/ana.25205 PubMed DOI PMC

Jayakar P, Gotman J, Harvey AS, et al. . Diagnostic utility of invasive EEG for epilepsy surgery: Indications, modalities, and techniques. Epilepsia. 2016;57(11):1735-1747. doi:10.1111/epi.13515 PubMed DOI

Abou-Al-Shaar H, Brock AA, Kundu B, Englot DJ, Rolston JD. Increased nationwide use of stereoencephalography for intracranial epilepsy electroencephalography recordings. J Clin Neurosci. 2018;53:132-134. doi:10.1016/j.jocn.2018.04.064 PubMed DOI PMC

Gonzalez-Martinez J, Bulacio J, Alexopoulos A, Jehi L, Bingaman W, Najm I. Stereoelectroencephalography in the “difficult to localize” refractory focal epilepsy: early experience from a North American epilepsy center. Epilepsia. 2013;54(2):323-330. doi:10.1111/j.1528-1167.2012.03672.x PubMed DOI

Hall JA, Khoo HM. Robotic-assisted and image-guided MRI-compatible stereoelectroencephalography. Can J Neurol Sci. 2018;45(1):35-43. doi:10.1017/cjn.2017.240 PubMed DOI

Cardinale F, Rizzi M, Vignati E, et al. . Stereoelectroencephalography: retrospective analysis of 742 procedures in a single centre. Brain. 2019;142(9):2688-2704. doi:10.1093/brain/awz196 PubMed DOI

Cossu M, Cardinale F, Castana L, et al. . Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures. Neurosurgery. 2005;57(4):706-718. doi:10.1227/01.NEU.0000176656.33523.1e PubMed DOI

Heinze G, Wallisch C, Dunkler D. Variable selection: a review and recommendations for the practicing statistician. Biom J. 2018;60(3):431-449. doi:10.1002/bimj.201700067 PubMed DOI PMC

Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373-1379. doi:10.1016/S0895-4356(96)00236-3 PubMed DOI

Moons KGM, Altman DG, Reitsma JB, et al. . Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1-73. doi:10.7326/M14-0698 PubMed DOI

scikit-learn: Machine learning in Python. Accessed October 22, 2021. https://scikit-learn.org/stable/index.html.

Robin X, Turck N, Hainard A, et al. . pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. doi:10.1186/1471-2105-12-77 PubMed DOI PMC

Engel J. Surgical Treatment of the Epilepsies: Lippincott Williams & Wilkins; 1993.

SENSE. The 5-SENSE calculator. Accessed October 22, 2021. https://lab-frauscher.github.io/Sense_calc/

Jobst BC, Cascino GD. Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA. 2015;313(3):285-293. doi:10.1001/jama.2014.17426 PubMed DOI

Tanaka H, Gotman J, Khoo HM, Olivier A, Hall J, Dubeau F. Neurophysiological seizure-onset predictors of epilepsy surgery outcome: a multivariable analysis. J Neurosurg. 2019;1-10. doi:10.3171/2019.9.JNS19527 PubMed DOI

Arévalo-Astrada M, McLachlan RS, Suller-Marti A, et al. . All that glitters: contribution of stereo-EEG in patients with lesional epilepsy. Epilepsy Res. 2021;170:106546. doi:10.1016/j.eplepsyres.2020.106546 PubMed DOI

Krendl R, Lurger S, Baumgartner C. Absolute spike frequency predicts surgical outcome in TLE with unilateral hippocampal atrophy. Neurology. 2008;71(6):413-418. doi:10.1212/01.wnl.0000310775.87331.90 PubMed DOI

Aghakhani Y, Liu X, Jette N, Wiebe S. Epilepsy surgery in patients with bilateral temporal lobe seizures: a systematic review. Epilepsia. 2014;55(12):1892-1901. doi:10.1111/epi.12856 PubMed DOI

Fitzgerald Z, Morita-Sherman M, Hogue O, et al. . Improving the prediction of epilepsy surgery outcomes using basic scalp EEG findings. Epilepsia. 2021;62(10):2439-2450. doi:10.1111/epi.17024. PubMed DOI PMC

Bautista RE, Spencer DD, Spencer SS. EEG findings in frontal lobe epilepsies. Neurology. 1998;50(6):1765-1771. doi:10.1212/WNL.50.6.1765 PubMed DOI

Salanova V, Andermann F, Olivier A, Rasmussen T, Quesney LF. Occipital lobe epilepsy: electroclinical manifestations, electrocorticography, cortical stimulation and outcome in 42 patients treated between 1930 and 1991. Surgery of occipital lobe epilepsy. Brain. 1992;115(Pt 6):1655-1680. doi:10.1093/brain/115.6.1655 PubMed DOI

Blume WT, Wiebe S, Tapsell LM. Occipital epilepsy: lateral versus mesial. Brain. 2005;128(Pt 5):1209-1225. doi:10.1093/brain/awh458 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...