Development and Validation of the 5-SENSE Score to Predict Focality of the Seizure-Onset Zone as Assessed by Stereoelectroencephalography
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, validační studie
PubMed
34870697
PubMed Central
PMC8649918
DOI
10.1001/jamaneurol.2021.4405
PII: 2786580
Knihovny.cz E-zdroje
- MeSH
- elektroencefalografie * MeSH
- epilepsie diagnóza chirurgie MeSH
- kohortové studie MeSH
- lidé MeSH
- předoperační péče MeSH
- průzkumy a dotazníky normy MeSH
- záchvaty diagnóza chirurgie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
IMPORTANCE: Stereoelectroencephalography (SEEG) has become the criterion standard in case of inconclusive noninvasive presurgical epilepsy workup. However, up to 40% of patients are subsequently not offered surgery because the seizure-onset zone is less focal than expected or cannot be identified. OBJECTIVE: To predict focality of the seizure-onset zone in SEEG, the 5-point 5-SENSE score was developed and validated. DESIGN, SETTING, AND PARTICIPANTS: This was a monocentric cohort study for score development followed by multicenter validation with patient selection intervals between February 2002 to October 2018 and May 2002 to December 2019. The minimum follow-up period was 1 year. Patients with drug-resistant epilepsy undergoing SEEG at the Montreal Neurological Institute were analyzed to identify a focal seizure-onset zone. Selection criteria were 2 or more seizures in electroencephalography and availability of complete neuropsychological and neuroimaging data sets. For validation, patients from 9 epilepsy centers meeting these criteria were included. Analysis took place between May and July 2021. MAIN OUTCOMES AND MEASURES: Based on SEEG, patients were grouped as focal and nonfocal seizure-onset zone. Demographic, clinical, electroencephalography, neuroimaging, and neuropsychology data were analyzed, and a multiple logistic regression model for developing a score to predict SEEG focality was created and validated in an independent sample. RESULTS: A total of 128 patients (57 women [44.5%]; median [range] age, 31 [13-58] years) were analyzed for score development and 207 patients (97 women [46.9%]; median [range] age, 32 [16-70] years) were analyzed for validation. The score comprised the following 5 predictive variables: focal lesion on structural magnetic resonance imaging, absence of bilateral independent spikes in scalp electroencephalography, localizing neuropsychological deficit, strongly localizing semiology, and regional ictal scalp electroencephalography onset. The 5-SENSE score had an optimal mean (SD) probability cutoff for identifying a focal seizure-onset zone of 37.6 (3.5). Area under the curve, specificity, and sensitivity were 0.83, 76.3% (95% CI, 66.7-85.8), and 83.3% (95% CI, 72.30-94.1), respectively. Validation showed 76.0% (95% CI, 67.5-84.0) specificity and 52.3% (95% CI, 43.0-61.5) sensitivity. CONCLUSIONS AND RELEVANCE: High specificity in score development and validation confirms that the 5-SENSE score predicts patients where SEEG is unlikely to identify a focal seizure-onset zone. It is a simple and useful tool for assisting clinicians to reduce unnecessary invasive diagnostic burden on patients and overutilization of limited health care resources.
Dalhousie University and Hospital Division of Neurology Halifax Nova Scotia Canada
Department of Neurology Northwestern University Chicago Illinois
Department of Neurology University of Pittsburgh Pittsburgh Pennsylvania
Department of Neurosurgery Massachusetts General Hospital Boston
Karl Landsteiner Institute for Neurorehabilitation and Space Neurology Salzburg Austria
Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
Neurology Department Carol Davila University of Medicine and Pharmacy Bucharest Romania
Zobrazit více v PubMed
Wiebe S, Blume WT, Girvin JP, Eliasziw M; Effectiveness and Efficiency of Surgery for Temporal Lobe Epilepsy Study Group . A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345(5):311-318. doi:10.1056/NEJM200108023450501 PubMed DOI
Dwivedi R, Ramanujam B, Chandra PS, et al. . Surgery for drug-resistant epilepsy in children. N Engl J Med. 2017;377(17):1639-1647. doi:10.1056/NEJMoa1615335 PubMed DOI
Lüders HO, Najm I, Nair D, Widdess-Walsh P, Bingman W. The epileptogenic zone: general principles. Epileptic Disord. 2006;8(suppl 2):S1-S9. PubMed
Rosenow F, Lüders H. Presurgical evaluation of epilepsy. Brain. 2001;124(Pt 9):1683-1700. doi:10.1093/brain/124.9.1683 PubMed DOI
Frauscher B. Localizing the epileptogenic zone. Curr Opin Neurol. 2020;33(2):198-206. doi:10.1097/WCO.0000000000000790 PubMed DOI
Vakharia VN, Duncan JS, Witt J-A, Elger CE, Staba R, Engel J Jr. Getting the best outcomes from epilepsy surgery. Ann Neurol. 2018;83(4):676-690. doi:10.1002/ana.25205 PubMed DOI PMC
Jayakar P, Gotman J, Harvey AS, et al. . Diagnostic utility of invasive EEG for epilepsy surgery: Indications, modalities, and techniques. Epilepsia. 2016;57(11):1735-1747. doi:10.1111/epi.13515 PubMed DOI
Abou-Al-Shaar H, Brock AA, Kundu B, Englot DJ, Rolston JD. Increased nationwide use of stereoencephalography for intracranial epilepsy electroencephalography recordings. J Clin Neurosci. 2018;53:132-134. doi:10.1016/j.jocn.2018.04.064 PubMed DOI PMC
Gonzalez-Martinez J, Bulacio J, Alexopoulos A, Jehi L, Bingaman W, Najm I. Stereoelectroencephalography in the “difficult to localize” refractory focal epilepsy: early experience from a North American epilepsy center. Epilepsia. 2013;54(2):323-330. doi:10.1111/j.1528-1167.2012.03672.x PubMed DOI
Hall JA, Khoo HM. Robotic-assisted and image-guided MRI-compatible stereoelectroencephalography. Can J Neurol Sci. 2018;45(1):35-43. doi:10.1017/cjn.2017.240 PubMed DOI
Cardinale F, Rizzi M, Vignati E, et al. . Stereoelectroencephalography: retrospective analysis of 742 procedures in a single centre. Brain. 2019;142(9):2688-2704. doi:10.1093/brain/awz196 PubMed DOI
Cossu M, Cardinale F, Castana L, et al. . Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures. Neurosurgery. 2005;57(4):706-718. doi:10.1227/01.NEU.0000176656.33523.1e PubMed DOI
Heinze G, Wallisch C, Dunkler D. Variable selection: a review and recommendations for the practicing statistician. Biom J. 2018;60(3):431-449. doi:10.1002/bimj.201700067 PubMed DOI PMC
Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373-1379. doi:10.1016/S0895-4356(96)00236-3 PubMed DOI
Moons KGM, Altman DG, Reitsma JB, et al. . Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1-73. doi:10.7326/M14-0698 PubMed DOI
scikit-learn: Machine learning in Python. Accessed October 22, 2021. https://scikit-learn.org/stable/index.html.
Robin X, Turck N, Hainard A, et al. . pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. doi:10.1186/1471-2105-12-77 PubMed DOI PMC
Engel J. Surgical Treatment of the Epilepsies: Lippincott Williams & Wilkins; 1993.
SENSE. The 5-SENSE calculator. Accessed October 22, 2021. https://lab-frauscher.github.io/Sense_calc/
Jobst BC, Cascino GD. Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA. 2015;313(3):285-293. doi:10.1001/jama.2014.17426 PubMed DOI
Tanaka H, Gotman J, Khoo HM, Olivier A, Hall J, Dubeau F. Neurophysiological seizure-onset predictors of epilepsy surgery outcome: a multivariable analysis. J Neurosurg. 2019;1-10. doi:10.3171/2019.9.JNS19527 PubMed DOI
Arévalo-Astrada M, McLachlan RS, Suller-Marti A, et al. . All that glitters: contribution of stereo-EEG in patients with lesional epilepsy. Epilepsy Res. 2021;170:106546. doi:10.1016/j.eplepsyres.2020.106546 PubMed DOI
Krendl R, Lurger S, Baumgartner C. Absolute spike frequency predicts surgical outcome in TLE with unilateral hippocampal atrophy. Neurology. 2008;71(6):413-418. doi:10.1212/01.wnl.0000310775.87331.90 PubMed DOI
Aghakhani Y, Liu X, Jette N, Wiebe S. Epilepsy surgery in patients with bilateral temporal lobe seizures: a systematic review. Epilepsia. 2014;55(12):1892-1901. doi:10.1111/epi.12856 PubMed DOI
Fitzgerald Z, Morita-Sherman M, Hogue O, et al. . Improving the prediction of epilepsy surgery outcomes using basic scalp EEG findings. Epilepsia. 2021;62(10):2439-2450. doi:10.1111/epi.17024. PubMed DOI PMC
Bautista RE, Spencer DD, Spencer SS. EEG findings in frontal lobe epilepsies. Neurology. 1998;50(6):1765-1771. doi:10.1212/WNL.50.6.1765 PubMed DOI
Salanova V, Andermann F, Olivier A, Rasmussen T, Quesney LF. Occipital lobe epilepsy: electroclinical manifestations, electrocorticography, cortical stimulation and outcome in 42 patients treated between 1930 and 1991. Surgery of occipital lobe epilepsy. Brain. 1992;115(Pt 6):1655-1680. doi:10.1093/brain/115.6.1655 PubMed DOI
Blume WT, Wiebe S, Tapsell LM. Occipital epilepsy: lateral versus mesial. Brain. 2005;128(Pt 5):1209-1225. doi:10.1093/brain/awh458 PubMed DOI