Acclimations to Cold and Warm Conditions Differently Affect the Energy Metabolism of Diapausing Larvae of the European Corn Borer Ostrinia nubilalis (Hbn.)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34880780
PubMed Central
PMC8647814
DOI
10.3389/fphys.2021.768593
Knihovny.cz E-zdroje
- Klíčová slova
- ATP, COX, NAD+, NADP+, diapause, energy metabolism, gene expression,
- Publikační typ
- časopisecké články MeSH
The European corn borer Ostrinia nubilalis is a pest species, whose fifth instar larvae gradually develop cold hardiness during diapause. The physiological changes underlying diapause progression and cold hardiness development are still insufficiently understood in insects. Here, we follow a complex of changes related to energy metabolism during cold acclimation (5°C) of diapausing larvae and compare this to warm-acclimated (22°C) and non-diapause controls. Capillary electrophoresis of nucleotides and coenzymes has shown that in gradually cold-acclimated groups concentrations of ATP/ADP and, consequently, energy charge slowly decrease during diapause, while the concentration of AMP increases, especially in the first months of diapause. Also, the activity of cytochrome c oxidase (COX), as well as the concentrations of NAD+ and GMP, decline in cold-acclimated groups, until the latter part of diapause, when they recover. Relative expression of NADH dehydrogenase (nd1), coenzyme Q-cytochrome c reductase (uqcr), COX, ATP synthase (atp), ADP/ATP translocase (ant), and prohibitin 2 (phb2) is supressed in cold-acclimated larvae during the first months of diapause and gradually increases toward the termination of diapause. Contrary to this, NADP+ and UMP levels significantly increased in the first few months of diapause, after gradual cold acclimation, which is in connection with the biosynthesis of cryoprotective molecules, as well as regeneration of small antioxidants. Our findings evidence the existence of a cold-induced energy-saving program that facilitates long-term maintenance of larval diapause, as well as gradual development of cold hardiness. In contrast, warm acclimation induced faster depletion of ATP, ADP, UMP, NAD+, and NADP+, as well as higher activity of COX and generally higher expression of all energy-related genes in comparison to cold-acclimated larvae. Moreover, such unusually high metabolic activity, driven by high temperatures, lead to premature mortality in the warm-acclimated group after 2 months of diapause. Thus, our findings strongly support the importance of low temperature exposure in early diapause for gradual cold hardiness acquisition, successful maintenance of the resting state and return to active development. Moreover, they demonstrate potentially adverse effects of global climate changes and subsequent increase in winter temperatures on cold-adapted terrestrial organisms in temperate and subpolar regions.
Department of Analytical Chemistry Faculty of Science Palacký University Olomouc Czechia
Department of Biology and Ecology Faculty of Sciences University of Novi Sad Novi Sad Serbia
Institute for Biological Research Siniša Stanković Belgrade Serbia
Zobrazit více v PubMed
Andreadis S. S., Vryzas Z., Papadopoulou-Mourkidou E., Savopoulou-Soultani M. (2008). Age-dependent changes in tolerance to cold and accumulation of cryoprotectants in overwintering and non-overwintering larvae of European corn borer Ostrinia nubilalis. Physiol. Entomol. 33 365–371. 10.1111/j.1365-3032.2008.00642.x DOI
Artal-Sanz M., Tavernarakis N. (2009). Prohibitin couples diapause signalling to mitochondrial metabolism during ageing in C. elegans. Nature 461 793–797. 10.1038/nature08466 PubMed DOI
Atkinson D. E. (1968). Energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7 4030–4034. 10.1021/bi00851a033 PubMed DOI
Beck S. D. (1962). Photoperiodic induction of diapause in an insect. Biol. Bull. 122 1–12. 10.2307/1539316 DOI
Beck S. D. (1989). Factors influencing the intensity of larval diapause in Ostrinia nubilalis. J. Insect Physiol. 35 75–79. 10.1016/0022-1910(89)90039-5 DOI
Beck S. D., Hanec W. (1960). Diapause in the European corn borer, Pyrausta nubilalis (Hübn.). J. Insect Physiol. 4 304–318. 10.1016/0022-1910(60)90056-1 DOI
Beck S. D., Shane J. L. (1969). Effects of ecdysones on diapause in the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 15 721–730. 10.1016/0022-1910(69)90113-9 DOI
Beck S. D., Shane J. L., Garland J. A. (1969). Ammonium-induced termination of diapause in the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 15 945–951. 10.1016/0022-1910(69)90134-6 DOI
Blagojević D. (2007). Antioxidant systems in supporting environmental and programmed adaptations to low temperatures. Cryoletters 28 137–150. PubMed
Blagojević D. P., Grubor-Lajšić G., Spasić M. B. (2011). Cold defence responses: the role of oxidative stress. Front. Biosci. 3:416–427. 10.2741/s161 PubMed DOI
Bodnaryk R. P. (1987). Dual control of pupal diapause by cyclic nucleotides in the bertha armyworm, Mamestra configurata Wlk. J. Insect Physiol. 33 33–37. 10.1016/0022-1910(87)90101-6 PubMed DOI
Coates P. J., Jamieson D. J., Smart K., Prescott A. R., Hall P. A. (1997). The prohibitin family of mitochondrial proteins regulate replicative lifespan. Curr. Biol. 7 607–610. 10.1016/S0960-9822(06)00261-2 PubMed DOI
Deng Y., Wang Z. V., Gordillo R., An Y., Zhang C., Liang Q., et al. (2017). An adipo-biliary-uridine axis that regulates energy homeostasis. Science 355:eaaf5375. 10.1126/science.aaf5375 PubMed DOI PMC
Denlinger D. (2002). Regulation of diapause. Ann. Rev. Entomol. 478 93–122. 10.1146/annurev.ento.47.091201.145137 PubMed DOI
Denlinger D. (2008). Why to study diapause? Entomol. Res. 38 1–9. 10.1111/j.1748-5967.2008.00139.x DOI
Eddy S. F., Morin P., Jr., Storey K. B. (2006). Differential expression of selected mitochondrial genes in hibernating little brown bats, Myotis lucifugus. J. Exp. Zool. A Comp. Exp. Biol. 305 620–630. 10.1002/jez.a.294 PubMed DOI
Friedecký D., Tomková J., Maier V., Janošt’áková A., Procházka M., Adam T. (2007). Capillary electrophoretic method for nucleotide analysis in cells: application on inherited metabolic disorders. Electrophoresis 28 373–380. 10.1002/elps.200600262 PubMed DOI
Fujiwara Y., Denlinger D. L. (2007). High temperature and hexane break pupal diapause in the flesh fly, Sarcophaga crassipalpis, by activating ERK/MAPK. J. Insect Physiol. 53 1276–1282. 10.1016/j.jinsphys.2007.07.001 PubMed DOI
Ganger M. T., Dietz G. D., Ewing S. J. (2017). A common base method for analysis of qPCR data and the application of simple blocking in qPCR experiments. BMC Bioinform. 18:534. 10.1186/s12859-017-1949-5 PubMed DOI PMC
Grubor-Lajšić G., Block W., Palanački V., Glumac S. (1991). Cold hardiness parameters of overwintering diapause larvae of Ostrinia nubilalis in Vojvodina, Yugoslavia. Cryoletters 12 177–182.
Grubor-Lajšić G., Block W., Telesmanić M., Jovanović A., Stevanović D., Bača F. (1997). Effect of cold acclimation on the antioxidant defense system of two larval Lepidoptera (Noctuidae). Arch. Insect Biochem. Physiol. 36 1–10. 10.1002/(SICI)1520-6327199736:1<1::AID-ARCH1<3.0.CO;2-# PubMed DOI
Hahn D. A., Denlinger D. L. (2007). Meeting the energetic demands of insect diapause: nutrient storage and utilization. J. Insect Physiol. 52 1213–1218. 10.1016/j.jinsphys.2007.03.018 PubMed DOI
Hahn D. A., Denlinger D. L. (2011). Energetics of insect diapause. Ann. Rev. Entomol. 56 103–121. 10.1146/annurev-ento-112408-085436 PubMed DOI
Hardie D. G., Hawley S. A. (2001). AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23 1112–1119. 10.1002/bies.10009 PubMed DOI
Harvey W. R. (1962). Metabolic aspects of insect diapause. Ann. Rev. Entomol. 7 57–80. 10.1146/annurev.en.07.010162.000421 DOI
Hofmann G. E., Hand S. C. (1990). Subcellular differentiation arrested in Artemia embryos under anoxia: evidence supporting a regulatory role for intracellular pH. J. Exp. Zool. 253 287–302. 10.1002/jez.1402530308 DOI
Joanisse R., Storey K. (1994). Mitochondrial enzymes during overwintering in two species of cold-hardy gall insects. Insect Biochem. Mol. Biol. 24 145–150. 10.1016/0965-1748(94)90080-9 DOI
Jovanović-Galović A. (1997). Antioxidative System of the European Corn Borer (Ostrinia nubilalis, Hubn) in Different Developmental Stages: Subcellular Distribution and the Role of Antioxidants in Metamorphosis. Ph. D. dissertation. Novi Sad: University of Novi Sad.
Jovanović-Galović A., Blagojević D. P., Grubor-Lajsić G., Worland R., Spasić M. B. (2004). Role of antioxidant defense during different stages of preadult life cycle in European corn borer (Ostrinia nubilalis, Hubn.): diapause and metamorphosis. Arch. Insect Biochem. Physiol. 55 79–89. 10.1002/arch.10126 PubMed DOI
Jovanović-Galović A., Blagojević D. P., Grubor-Lajsić G., Worland R., Spasić M. B. (2007). Antioxidant defense in mitochondria during diapause and postdiapause development of European corn borer (Ostrinia nubilalis, Hubn.). Arch. Inect Biocem. Physiol. 64 111–119. 10.1002/arch.20160 PubMed DOI
Kojić D., Spasojević I., Mojović M., Blagojević D., Worland M. R., Grubor-Lajšić G., et al. (2009). Potential role of hydrogen peroxide and melanin in the cold hardiness of Ostrinia nubilalis (Lepidoptera: Crambidae). Eur. J. Entomol. 106 451–454. 10.14411/eje.2009.056 DOI
Kojić D., Purać J., Popović ŽD., Pamer E., Grubor-Lajšić G. (2010). Importance of the body water management for winter cold survival of the European corn borer Ostrinia nubilalis Hübn. (Lepidoptera: Pyralidae). Biotechnol. Biotechnol. Equip. 24 648–654. 10.1080/13102818.2010.10817915 DOI
Kojić D., Popović ŽD., Orčić D., Purać J., Orčić S., Vukašinović E. L., et al. (2018). The influence of low temperature and diapause phase on sugar and polyol content in the European corn borer Ostrinia nubilalis (Hbn.). J. Insect Physiol. 109 107–113. 10.1016/j.jinsphys.2018.07.007 PubMed DOI
Koštál V. (2006). Eco-physiological phases of insect diapause. J. Insect Physiol. 52 113–127. 10.1016/j.jinsphys.2005.09.008 PubMed DOI
Koštál V., Tollarová M., Doležel D. (2008). Dynamism in physiology and gene transcription during reproductive diapause in a heteropteran bug, Pyrrhocoris apterus. J. Insect Physiol. 54 77–88. 10.1016/j.jinsphys.2007.08.004 PubMed DOI
Koštál V., Štětina T., Poupardin R., Korbelová J., Bruce A. W. (2017). Conceptual framework of the ecophysiological phases of insect diapause development justified by transcriptomic profiling. Proc. Natl. Acad. Sci. U.S.A. 114 8532–8537. 10.1073/pnas.1707281114 PubMed DOI PMC
Krumm J. T., Hunt T. E., Skoda S. R., Hein G. L., Lee D. J., Clark P. L., et al. (2008). Genetic variability of the European corn borer, Ostrinia nubilalis, suggests gene flow between populations in the Midwestern United States. J. Insect Sci. 8:72. 10.1673/031.008.7201 PubMed DOI PMC
MacRae T. H. (2010). Gene expresion, metabolic regulation and stress tolerance during diapause. Cell. Mol. Life Sci. 67 2405–2424. 10.1007/s00018-010-0311-0 PubMed DOI PMC
McLeod D. G. R., Beck S. D. (1963). Photoperiodic termination of diapause in an insect. Biol. Bull. 124 84–96. 10.2307/1539570 DOI
McMullen D. C., Storey K. B. (2008). Mitochondria of cold hardy insects: responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels. Insect Biochem. Mol. Biol. 38 367–373. 10.1016/j.ibmb.2007.12.003 PubMed DOI
Molinari F., Demaria D., Vittone G. (2010). Ostrinia nubilalis Hübner (Lepidoptera, Pyralidae) as a threat for apple. Int. Organ. Biol. Integr. Control Noxious Anim. Plants WPRS Bull. 54 247–250.
Murphy T. A., Wyatt G. R. (1964). Enzymatic regulation of trehalose and glycogen synthesis in the fat body of an insect. Nature 202 1112–1113. 10.1038/2021112a0 PubMed DOI
Nordin J. H., Cui Z., Yin C. M. (1984). Cold-induced glycerol accumulation by Ostrinia nubilalis larvae is developmentally regulated. J. Insect Physiol. 30 563–566. 10.1016/0022-1910(84)90084-2 DOI
Podrabsky J. E., Hand S. C. (1999). The bioenergetics of embryonic diapause in an annual killifish, Austrofundulus limnaeus. J. Exp. Biol. 202 2567–2580. 10.1242/jeb.202.19.2567 PubMed DOI
Popović ŽD., Subotić A., Nikolić T. V., Radojičić R., Blagojević D. P., Grubor-Lajšić G., et al. (2015). Expression of stress-related genes in diapause of European corn borer (Ostrinia nubilalis Hbn.). Comp. Biochem. Physiol. B Biochem. Mol. Biol 186 1–7. 10.1016/j.cbpb.2015.04.004 PubMed DOI
Purać J., Kojić D., Popović ŽD., Vukašinović E., Tiziani S., Gunther U., et al. (2015). Metabolomic analysis of diapausing and non-diapausing larvae of European corn borer Ostrinia nubilalis (Hbn.) (Lepidoptera: Crambidae). Acta Chim. Slov. 62 761–767. 10.17344/acsi.2015.1370 PubMed DOI
Reynolds J. A., Hand S. C. (2004). Differences in isolated mitochondria are insufficient to account for respiratory depression during diapause in Artemia franciscana embryos. Physiol. Biochem. Zool. 77 366–377. 10.1086/420950 PubMed DOI
Robich R. M., Rinehart J. P., Kitchen L. J., Denlinger D. L. (2007). Diapause-specific gene expression in the northern house mosquito, Culex pipiens L., identified by suppressive subtractive hybridization. J. Insect Physiol. 53 235–245. 10.1016/j.jinsphys.2006.08.008 PubMed DOI PMC
Robinson G. S., Ackery P. R., Kitching I. J., Beccaloni G. W., Hernández L. M., et al. (2010). HOSTS – A Database of the World’s Lepidopteran Hostplants. Available online at: http://www.nhm.ac.uk/research-curation/research/projects/hostplants/ (accessed July 16, 2021).
Salama H. S. (1970). Rearing the corn borer, Ostrinia nubilalis (Hubn.), on a semi-artificial diet. Z. Angew. Entomol. 65 216–218. 10.1111/j.1439-0418.1970.tb03955.x DOI
Singtripop T., Saeangsakda M., Tatun N., Kaneko Y., Sakurai S. (2007). Correlation of oxygen consumption, cytochrome c oxidase, and cytochrome c oxidase subunit I gene expression in the termination of larval diapause in the bamboo borer, Omphisa fuscidentalis. J. Insect Physiol. 53 933–939. 10.1016/j.jinsphys.2007.03.005 PubMed DOI
Stanić B., Jovanović-Galović A., Blagojević D. P., Grubor-Lajšić G., Worland R., Spasić M. B. (2004). Cold hardiness in Ostrinia nubilalis (Lepidoptera: Crambidae): glycerol content, hexose monophosphate shunt activity, and antioxidative defense system. Eur. J. Entomol. 101 459–466. 10.14411/eje.2004.065 DOI
Staples J. F., Buck L. T. (2009). Matching cellular metabolic supply and demand in energy-stressed animals. Comp. Biochem. Physiol. A 153 95–105. 10.1016/j.cbpa.2009.02.010 PubMed DOI
Storey K. B., Storey J. M. (2004). Metabolic rate depression in animals: transcriptional and translational controls. Biol. Rev. Camb. Philos. Soc. 79 207–233. 10.1017/S1464793103006195 PubMed DOI
Storey K. B., Storey J. M. (2007). Tribute to P.L. Lutz: putting life on ‘pause’ – molecular regulation of hypometabolism. J. Exp. Biol. 210 1700–1714. 10.1242/jeb.02716 PubMed DOI
Storey K. B., Storey J. M. (2012). Insect cold hardiness: metabolic, gene and protein adaptation. Can. J. Zool. 90 456–470. 10.1139/z2012-011 PubMed DOI
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., et al. (2012). Primer3 – new capabilities and interfaces. Nucleic Acids Res. 40 e115–e115. 10.1093/nar/gks596 PubMed DOI PMC
Uzelac I., Avramov M., Čelić T., Vukašinović E., Gošić-Dondo S., Purać J., et al. (2020). Effect of cold acclimation on selected metabolic enzymes during diapause in the European corn borer Ostrinia nubilalis (Hbn.). Sci. Rep. 10:9085. 10.1038/s41598-020-65926-w PubMed DOI PMC
Vukašinović E. L., Pond D. W., Worland M. R., Kojić D., Purać J., Blagojević D. P., et al. (2013). Diapause induces changes in the composition and biophysical properties of lipids in larvae of the European corn borer, Ostrinia nubilalis (Lepidoptera: Crambidae). Comp. Biochem. Physiol. B 165 219–225. 10.1016/j.cbpb.2013.05.001 PubMed DOI
Vukašinović E. L., Pond D. W., Worland M. R., Kojić D., Purać J., Popović ŽD., et al. (2015). Diapause induces remodeling of the fatty acid composition of membrane and storage lipids in overwintering larvae of Ostrinia nubilalis, Hubn. (Lepidoptera: Crambidae). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 184 36–43. 10.1016/j.cbpb.2015.02.003 PubMed DOI
Vukašinović E. L., Pond D. W., Grubor-Lajšić G., Worland M. R., Kojić D., Purać J., et al. (2018). Temperature adaptation of lipids in diapausing Ostrinia nubilalis: an experimental study to distinguish environmental versus endogenous controls. J. Comp. Physiol. B 188 27–36. 10.1007/s00360-017-1110-9 PubMed DOI
Weissgerber T. L., Milić N. M., Winham S. J., Garovic V. D. (2015). Beyond bar and line graphs: time for a new data presentation paradigm. PLoS Biol. 13:e1002128. 10.1371/journal.pbio.1002128 PubMed DOI PMC
Wipking W., Viebahn M., Neumann D. (1995). Oxygen consumption, water, lipid and glycogen content of early and late diapause and non-diapause larvae of the burnet moth Zygaena trifolii. J. Insect Physiol. 41 47–56. 10.1016/0022-1910(94)00079-V DOI
Yang J., Zhu J., Xu W. H. (2010). Differential expression, phosphorylation of COX subunit 1 and COX activity during diapause phase in the cotton bollworm, Helicoverpa armigera. J. Insect Physiol. 56 1992–1998. 10.1016/j.jinsphys.2010.08.023 PubMed DOI
You Y., Kim J., Raizen D. M., Avery L. (2008). Insulin, cGMP, and TGF-b signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab. 7 249–257. 10.1016/j.cmet.2008.01.005 PubMed DOI PMC
Zhang Y., Guo S., Xie C., Fang J. (2020). Uridine metabolism and its role in glucose, lipid, and amino acid homeostasis. Biomed. Res. Int. 2020:7091718. 10.1155/2020/7091718 PubMed DOI PMC
Zhu X. J., Dai J. Q., Tan X., Zhao Y., Yang W. J. (2009). Activation of an AMP-activated protein kinase is involved in post-diapause development of Artemia franciscana encysted embryos. BMC Dev. Biol. 9:21. 10.1186/1471-213X-9-21 PubMed DOI PMC