• This record comes from PubMed

Semi-Continuous Desalination and Concentration of Small-Volume Samples

. 2021 Nov 29 ; 22 (23) : . [epub] 20211129

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
20-21263S Czech Science Foundation

Electrodialysis is an electric-field-mediated process separating ions exploiting selective properties of ion-exchange membranes. The ion-exchange membranes create an ion-depleted zone in an electrolyte solution adjacent to the membrane under DC polarization. We constructed a microfluidic system that uses the ion-depleted zone to separate ions from the processed water solution. We tested the separation performance by desalting a model KCl solution spiked with fluorescein for direct observation. We showed both visually and by measuring the conductivity of the output solutions that the system can work in three modes of operation referred to as continuous desalination, desalination by accumulation, and unsuccessful desalination. The mode of operation can easily be set by changing the control parameters. The desalination factors for the model KCl solution reached values from 80 to 100%, depending on the mode of operation. The concentration factor, given as a ratio of concentrate-to-feed concentrations, reached zero for desalination by accumulation when only diluate was produced. The water recovery, therefore, was infinite at these conditions. Independent control of the diluate and concentrate flow rates and the DC voltage turned our system into a versatile platform, enabling us to set proper conditions to process various samples.

See more in PubMed

Xu T.W. Ion exchange membranes: State of their development and perspective. J. Membr. Sci. 2005;263:1–29. doi: 10.1016/j.memsci.2005.05.002. DOI

Ran J., Wu L., He Y.B., Yang Z.J., Wang Y.M., Jiang C.X., Ge L., Bakangura E., Xu T.W. Ion exchange membranes: New developments and applications. J. Membr. Sci. 2017;522:267–291. doi: 10.1016/j.memsci.2016.09.033. DOI

Strathmann H. Electrodialysis, a mature technology with a multitude of new applications. Desalination. 2010;264:268–288. doi: 10.1016/j.desal.2010.04.069. DOI

Sadrzadeh M., Mohammadi T. Sea water desalination using electrodialysis. Desalination. 2008;221:440–447. doi: 10.1016/j.desal.2007.01.103. DOI

Arar O., Yuksel U., Kabay N., Yuksel M. Various applications of electrodeionization (EDI) method for water treatment—A short review. Desalination. 2014;342:16–22. doi: 10.1016/j.desal.2014.01.028. DOI

Ghyselbrecht K., Huygebaert M., Van der Bruggen B., Ballet R., Meesschaert B., Pinoy L. Desalination of an industrial saline water with conventional and bipolar membrane electrodialysis. Desalination. 2013;318:9–18. doi: 10.1016/j.desal.2013.03.020. DOI

Oren Y. Capacitive delonization (CDI) for desalination and water treatment—Past, present and future (a review) Desalination. 2008;228:10–29. doi: 10.1016/j.desal.2007.08.005. DOI

Luo J.Y., Wu C.M., Xu T.W., Wu Y.H. Diffusion dialysis-concept, principle and applications. J. Membr. Sci. 2011;366:1–16. doi: 10.1016/j.memsci.2010.10.028. DOI

Mei Y., Tang C.Y.Y. Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination. 2018;425:156–174. doi: 10.1016/j.desal.2017.10.021. DOI

Yang K., Chu X.M., Zhang X.J., Li X.F., Zheng J.F., Li S.H., Li N.W., Sherazi T.A., Zhang S.B. The effect of polymer backbones and cation functional groups on properties of anion exchange membranes for fuel cells. J. Membr. Sci. 2020;603:118025. doi: 10.1016/j.memsci.2020.118025. DOI

Wu X.W., Hu J.P., Liu J., Zhou Q.M., Zhou W.X., Li H.Y., Wu Y.P. Ion exchange membranes for vanadium redox flow batteries. Pure Appl. Chem. 2014;86:633–649. doi: 10.1515/pac-2014-0101. DOI

Luo T., Abdu S., Wessling M. Selectivity of ion exchange membranes: A review. J. Membr. Sci. 2018;555:429–454. doi: 10.1016/j.memsci.2018.03.051. DOI

Li M., Anand R.K. Recent advancements in ion concentration polarization. Analyst. 2016;141:3496–3510. doi: 10.1039/C6AN00194G. PubMed DOI

Kim D., Ihm S., Park S., Yu Y., Kwak R. Concentric ion concentration polarization desalination for efficient En-bloc preconcentration and desalination. Desalination. 2021;499:114810. doi: 10.1016/j.desal.2020.114810. DOI

Bellon T., Polezhaev P., Vobecka L., Svoboda M., Slouka Z. Experimental observation of phenomena developing on ion-exchange systems during current-voltage curve measurement. J. Membr. Sci. 2019;572:607–618. doi: 10.1016/j.memsci.2018.11.037. DOI

Svoboda M., Slouka Z., Schrott W., Snita D. Cation exchange membrane integrated into a microfluidic device. Microelectron. Eng. 2009;86:1371–1374. doi: 10.1016/j.mee.2009.01.019. DOI

Wang Y.C., Stevens A.L., Han J.Y. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 2005;77:4293–4299. doi: 10.1021/ac050321z. PubMed DOI

Nikonenko V.V., Kovalenko A.V., Urtenov M.K., Pismenskaya N.D., Han J., Sistat P., Pourcelly G. Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination. 2014;342:85–106. doi: 10.1016/j.desal.2014.01.008. DOI

Slouka Z., Senapati S., Yan Y., Chang H.C. Charge Inversion, Water Splitting, and Vortex Suppression Due to DNA Sorption on Ion-Selective Membranes and Their Ion-Current Signatures. Langmuir. 2013;29:8275–8283. doi: 10.1021/la4007179. PubMed DOI

Belova E., Lopatkova G., Pismenskaya N., Nikonenko V., Larchet C. Role of water splitting in development in ion-exchange membrane of electroconvection systems. Desalination. 2006;199:59–61. doi: 10.1016/j.desal.2006.03.142. DOI

Kim J., Kim S., Kwak R. Controlling ion transport with pattern structures on ion exchange membranes in electrodialysis. Desalination. 2021;499:114801. doi: 10.1016/j.desal.2020.114801. DOI

Pundik T., Rubinstein I., Zaltzman B. Bulk electroconvection in electrolyte. Phys. Rev. E. 2005;72:061502. doi: 10.1103/PhysRevE.72.061502. PubMed DOI

Polezhaev P., Belloň T., Vobecká L., Slouka Z. Molecular sieving of alkyl sulfate anions on strong basic gel-type anion-exchange resins. Sep. Purif. Technol. 2021;276:119382. doi: 10.1016/j.seppur.2021.119382. DOI

Simons R. Origin and Elimination of Water Splitting in Ion-Exchange Membranes during Water Demineralization by Electrodialysis. Desalination. 1979;28:41–42. doi: 10.1016/S0011-9164(00)88125-4. DOI

Sablani S.S., Goosen M.F.A., Al-Belushi R., Wilf M. Concentration polarization in ultrafiltration and reverse osmosis: A critical review. Desalination. 2001;141:269–289. doi: 10.1016/S0011-9164(01)85005-0. DOI

Slouka Z., Senapati S., Shah S., Lawler R., Shi Z.G., Stack M.S., Chang H.C. Integrated, DC voltage-driven nucleic acid diagnostic platform for real sample analysis: Detection of oral cancer. Talanta. 2015;145:35–42. doi: 10.1016/j.talanta.2015.04.083. PubMed DOI PMC

Han W.B., Chen X.Y. A review: Applications of ion transport in micro-nanofluidic systems based on ion concentration polarization. J. Chem. Technol. Biot. 2020;95:1622–1631. doi: 10.1002/jctb.6288. DOI

Senapati S., Slouka Z., Shah S.S., Behura S.K., Shi Z.G., Stack M.S., Severson D.W., Chang H.C. An ion-exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion Phenomenon. Biosens. Bioelectron. 2014;60:92–100. doi: 10.1016/j.bios.2014.04.008. PubMed DOI PMC

Sun G.C., Slouka Z., Chang H.C. Fluidic-based ion memristors and ionic latches. Small. 2015;11:5206–5213. doi: 10.1002/smll.201501229. PubMed DOI

Kim S.J., Ko S.H., Kang K.H., Han J. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 2010;5:297–301. doi: 10.1038/nnano.2010.34. PubMed DOI

Shen M., Yang H., Sivagnanam V., Gijs M.A.M. Microfluidic protein preconcentrator using a microchannel-integrated nafion strip: Experiment and modeling. Anal. Chem. 2010;82:9989–9997. doi: 10.1021/ac102149f. PubMed DOI

Lee S.J., Rhee H., Jeon T.J., Kim D. Preconcentration of lipid vesicles using concentration polarization in a microfluidic chip. Sens. Actuators B Chem. 2016;229:276–280. doi: 10.1016/j.snb.2015.10.055. DOI

Han S.I., Yoo Y.K., Lee J., Kim C., Lee K., Lee T.H., Kim H., Yoon D.S., Hwang K.S., Kwak R., et al. High-ionic-strength pre-concentration via ion concentration polarization for blood-based biofluids. Sens. Actuators B Chem. 2018;268:485–493. doi: 10.1016/j.snb.2018.04.144. DOI

Kovar P., Tichy D., Slouka Z. Effect of channel geometry on ion-concentration polarization-based preconcentration and desalination. Biomicrofluidics. 2019;13:064102. doi: 10.1063/1.5124787. PubMed DOI PMC

Abdulbari H.A., Basheer E.A.M. Microfluidics chip for directional solvent extraction desalination of seawater. Sci. Rep. 2019;9:12576. doi: 10.1038/s41598-019-49071-7. PubMed DOI PMC

Ige E.O., Arun R.K., Singh P., Gope M., Saha R., Chanda N., Chakraborty S. Water desalination using graphene oxide-embedded paper microfluidics. Microfluid. Nanofluidics. 2019;23:80. doi: 10.1007/s10404-019-2247-5. DOI

Li H.B., Zou L. Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination. Desalination. 2011;275:62–66. doi: 10.1016/j.desal.2011.02.027. DOI

MacDonald B.D., Gong M.M., Zhang P., Sinton D. Out-of-plane ion concentration polarization for scalable water desalination. Lab Chip. 2014;14:681–685. doi: 10.1039/C3LC51255J. PubMed DOI

Schlumpberger S., Lu N.B., Suss M.E., Bazant M.Z. Scalable and continuous water deionization by shock electrodialysis. Environ. Sci. Tech. Let. 2015;2:367–372. doi: 10.1021/acs.estlett.5b00303. DOI

Knust K.N., Hlushkou D., Anand R.K., Tallarek U., Crooks R.M. Electrochemically mediated seawater desalination. Angew. Chem. Int. Edit. 2013;52:8107–8110. doi: 10.1002/anie.201302577. PubMed DOI PMC

Kim S.J., Li L.D., Han J. Amplified electrokinetic response by concentration polarization near nanofluidic channel. Langmuir. 2009;25:7759–7765. doi: 10.1021/la900332v. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...