Semi-Continuous Desalination and Concentration of Small-Volume Samples
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20-21263S
Czech Science Foundation
PubMed
34884708
PubMed Central
PMC8657425
DOI
10.3390/ijms222312904
PII: ijms222312904
Knihovny.cz E-resources
- Keywords
- cation-exchange membranes, desalination, ion concentration polarization, ion separation, microfluidics,
- MeSH
- Sodium Chloride isolation & purification MeSH
- Water Purification methods MeSH
- Electric Conductivity MeSH
- Electrodes MeSH
- Ion Exchange MeSH
- Wastewater chemistry MeSH
- Salinity * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Sodium Chloride MeSH
- Waste Water MeSH
Electrodialysis is an electric-field-mediated process separating ions exploiting selective properties of ion-exchange membranes. The ion-exchange membranes create an ion-depleted zone in an electrolyte solution adjacent to the membrane under DC polarization. We constructed a microfluidic system that uses the ion-depleted zone to separate ions from the processed water solution. We tested the separation performance by desalting a model KCl solution spiked with fluorescein for direct observation. We showed both visually and by measuring the conductivity of the output solutions that the system can work in three modes of operation referred to as continuous desalination, desalination by accumulation, and unsuccessful desalination. The mode of operation can easily be set by changing the control parameters. The desalination factors for the model KCl solution reached values from 80 to 100%, depending on the mode of operation. The concentration factor, given as a ratio of concentrate-to-feed concentrations, reached zero for desalination by accumulation when only diluate was produced. The water recovery, therefore, was infinite at these conditions. Independent control of the diluate and concentrate flow rates and the DC voltage turned our system into a versatile platform, enabling us to set proper conditions to process various samples.
New Technologies Research Centre University of West Bohemia Univerzitní 8 30614 Plzeň Czech Republic
See more in PubMed
Xu T.W. Ion exchange membranes: State of their development and perspective. J. Membr. Sci. 2005;263:1–29. doi: 10.1016/j.memsci.2005.05.002. DOI
Ran J., Wu L., He Y.B., Yang Z.J., Wang Y.M., Jiang C.X., Ge L., Bakangura E., Xu T.W. Ion exchange membranes: New developments and applications. J. Membr. Sci. 2017;522:267–291. doi: 10.1016/j.memsci.2016.09.033. DOI
Strathmann H. Electrodialysis, a mature technology with a multitude of new applications. Desalination. 2010;264:268–288. doi: 10.1016/j.desal.2010.04.069. DOI
Sadrzadeh M., Mohammadi T. Sea water desalination using electrodialysis. Desalination. 2008;221:440–447. doi: 10.1016/j.desal.2007.01.103. DOI
Arar O., Yuksel U., Kabay N., Yuksel M. Various applications of electrodeionization (EDI) method for water treatment—A short review. Desalination. 2014;342:16–22. doi: 10.1016/j.desal.2014.01.028. DOI
Ghyselbrecht K., Huygebaert M., Van der Bruggen B., Ballet R., Meesschaert B., Pinoy L. Desalination of an industrial saline water with conventional and bipolar membrane electrodialysis. Desalination. 2013;318:9–18. doi: 10.1016/j.desal.2013.03.020. DOI
Oren Y. Capacitive delonization (CDI) for desalination and water treatment—Past, present and future (a review) Desalination. 2008;228:10–29. doi: 10.1016/j.desal.2007.08.005. DOI
Luo J.Y., Wu C.M., Xu T.W., Wu Y.H. Diffusion dialysis-concept, principle and applications. J. Membr. Sci. 2011;366:1–16. doi: 10.1016/j.memsci.2010.10.028. DOI
Mei Y., Tang C.Y.Y. Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination. 2018;425:156–174. doi: 10.1016/j.desal.2017.10.021. DOI
Yang K., Chu X.M., Zhang X.J., Li X.F., Zheng J.F., Li S.H., Li N.W., Sherazi T.A., Zhang S.B. The effect of polymer backbones and cation functional groups on properties of anion exchange membranes for fuel cells. J. Membr. Sci. 2020;603:118025. doi: 10.1016/j.memsci.2020.118025. DOI
Wu X.W., Hu J.P., Liu J., Zhou Q.M., Zhou W.X., Li H.Y., Wu Y.P. Ion exchange membranes for vanadium redox flow batteries. Pure Appl. Chem. 2014;86:633–649. doi: 10.1515/pac-2014-0101. DOI
Luo T., Abdu S., Wessling M. Selectivity of ion exchange membranes: A review. J. Membr. Sci. 2018;555:429–454. doi: 10.1016/j.memsci.2018.03.051. DOI
Li M., Anand R.K. Recent advancements in ion concentration polarization. Analyst. 2016;141:3496–3510. doi: 10.1039/C6AN00194G. PubMed DOI
Kim D., Ihm S., Park S., Yu Y., Kwak R. Concentric ion concentration polarization desalination for efficient En-bloc preconcentration and desalination. Desalination. 2021;499:114810. doi: 10.1016/j.desal.2020.114810. DOI
Bellon T., Polezhaev P., Vobecka L., Svoboda M., Slouka Z. Experimental observation of phenomena developing on ion-exchange systems during current-voltage curve measurement. J. Membr. Sci. 2019;572:607–618. doi: 10.1016/j.memsci.2018.11.037. DOI
Svoboda M., Slouka Z., Schrott W., Snita D. Cation exchange membrane integrated into a microfluidic device. Microelectron. Eng. 2009;86:1371–1374. doi: 10.1016/j.mee.2009.01.019. DOI
Wang Y.C., Stevens A.L., Han J.Y. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 2005;77:4293–4299. doi: 10.1021/ac050321z. PubMed DOI
Nikonenko V.V., Kovalenko A.V., Urtenov M.K., Pismenskaya N.D., Han J., Sistat P., Pourcelly G. Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination. 2014;342:85–106. doi: 10.1016/j.desal.2014.01.008. DOI
Slouka Z., Senapati S., Yan Y., Chang H.C. Charge Inversion, Water Splitting, and Vortex Suppression Due to DNA Sorption on Ion-Selective Membranes and Their Ion-Current Signatures. Langmuir. 2013;29:8275–8283. doi: 10.1021/la4007179. PubMed DOI
Belova E., Lopatkova G., Pismenskaya N., Nikonenko V., Larchet C. Role of water splitting in development in ion-exchange membrane of electroconvection systems. Desalination. 2006;199:59–61. doi: 10.1016/j.desal.2006.03.142. DOI
Kim J., Kim S., Kwak R. Controlling ion transport with pattern structures on ion exchange membranes in electrodialysis. Desalination. 2021;499:114801. doi: 10.1016/j.desal.2020.114801. DOI
Pundik T., Rubinstein I., Zaltzman B. Bulk electroconvection in electrolyte. Phys. Rev. E. 2005;72:061502. doi: 10.1103/PhysRevE.72.061502. PubMed DOI
Polezhaev P., Belloň T., Vobecká L., Slouka Z. Molecular sieving of alkyl sulfate anions on strong basic gel-type anion-exchange resins. Sep. Purif. Technol. 2021;276:119382. doi: 10.1016/j.seppur.2021.119382. DOI
Simons R. Origin and Elimination of Water Splitting in Ion-Exchange Membranes during Water Demineralization by Electrodialysis. Desalination. 1979;28:41–42. doi: 10.1016/S0011-9164(00)88125-4. DOI
Sablani S.S., Goosen M.F.A., Al-Belushi R., Wilf M. Concentration polarization in ultrafiltration and reverse osmosis: A critical review. Desalination. 2001;141:269–289. doi: 10.1016/S0011-9164(01)85005-0. DOI
Slouka Z., Senapati S., Shah S., Lawler R., Shi Z.G., Stack M.S., Chang H.C. Integrated, DC voltage-driven nucleic acid diagnostic platform for real sample analysis: Detection of oral cancer. Talanta. 2015;145:35–42. doi: 10.1016/j.talanta.2015.04.083. PubMed DOI PMC
Han W.B., Chen X.Y. A review: Applications of ion transport in micro-nanofluidic systems based on ion concentration polarization. J. Chem. Technol. Biot. 2020;95:1622–1631. doi: 10.1002/jctb.6288. DOI
Senapati S., Slouka Z., Shah S.S., Behura S.K., Shi Z.G., Stack M.S., Severson D.W., Chang H.C. An ion-exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion Phenomenon. Biosens. Bioelectron. 2014;60:92–100. doi: 10.1016/j.bios.2014.04.008. PubMed DOI PMC
Sun G.C., Slouka Z., Chang H.C. Fluidic-based ion memristors and ionic latches. Small. 2015;11:5206–5213. doi: 10.1002/smll.201501229. PubMed DOI
Kim S.J., Ko S.H., Kang K.H., Han J. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 2010;5:297–301. doi: 10.1038/nnano.2010.34. PubMed DOI
Shen M., Yang H., Sivagnanam V., Gijs M.A.M. Microfluidic protein preconcentrator using a microchannel-integrated nafion strip: Experiment and modeling. Anal. Chem. 2010;82:9989–9997. doi: 10.1021/ac102149f. PubMed DOI
Lee S.J., Rhee H., Jeon T.J., Kim D. Preconcentration of lipid vesicles using concentration polarization in a microfluidic chip. Sens. Actuators B Chem. 2016;229:276–280. doi: 10.1016/j.snb.2015.10.055. DOI
Han S.I., Yoo Y.K., Lee J., Kim C., Lee K., Lee T.H., Kim H., Yoon D.S., Hwang K.S., Kwak R., et al. High-ionic-strength pre-concentration via ion concentration polarization for blood-based biofluids. Sens. Actuators B Chem. 2018;268:485–493. doi: 10.1016/j.snb.2018.04.144. DOI
Kovar P., Tichy D., Slouka Z. Effect of channel geometry on ion-concentration polarization-based preconcentration and desalination. Biomicrofluidics. 2019;13:064102. doi: 10.1063/1.5124787. PubMed DOI PMC
Abdulbari H.A., Basheer E.A.M. Microfluidics chip for directional solvent extraction desalination of seawater. Sci. Rep. 2019;9:12576. doi: 10.1038/s41598-019-49071-7. PubMed DOI PMC
Ige E.O., Arun R.K., Singh P., Gope M., Saha R., Chanda N., Chakraborty S. Water desalination using graphene oxide-embedded paper microfluidics. Microfluid. Nanofluidics. 2019;23:80. doi: 10.1007/s10404-019-2247-5. DOI
Li H.B., Zou L. Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination. Desalination. 2011;275:62–66. doi: 10.1016/j.desal.2011.02.027. DOI
MacDonald B.D., Gong M.M., Zhang P., Sinton D. Out-of-plane ion concentration polarization for scalable water desalination. Lab Chip. 2014;14:681–685. doi: 10.1039/C3LC51255J. PubMed DOI
Schlumpberger S., Lu N.B., Suss M.E., Bazant M.Z. Scalable and continuous water deionization by shock electrodialysis. Environ. Sci. Tech. Let. 2015;2:367–372. doi: 10.1021/acs.estlett.5b00303. DOI
Knust K.N., Hlushkou D., Anand R.K., Tallarek U., Crooks R.M. Electrochemically mediated seawater desalination. Angew. Chem. Int. Edit. 2013;52:8107–8110. doi: 10.1002/anie.201302577. PubMed DOI PMC
Kim S.J., Li L.D., Han J. Amplified electrokinetic response by concentration polarization near nanofluidic channel. Langmuir. 2009;25:7759–7765. doi: 10.1021/la900332v. PubMed DOI PMC