Study of the Mechanical, Sound Absorption and Thermal Properties of Cellular Rubber Composites Filled with a Silica Nanofiller
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000867
Technical University of Ostrava
DKRVO (RP/CPS/2020/004)
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34885602
PubMed Central
PMC8659120
DOI
10.3390/ma14237450
PII: ma14237450
Knihovny.cz E-zdroje
- Klíčová slova
- cellular rubber, excitation frequency, mechanical stiffness, silica nanofiller, sound absorption, thermal behavior, vibration damping,
- Publikační typ
- časopisecké články MeSH
This paper deals with the study of cellular rubbers, which were filled with silica nanofiller in order to optimize the rubber properties for given purposes. The rubber composites were produced with different concentrations of silica nanofiller at the same blowing agent concentration. The mechanical, sound absorption and thermal properties of the investigated rubber composites were evaluated. It was found that the concentration of silica filler had a significant effect on the above-mentioned properties. It was detected that a higher concentration of silica nanofiller generally led to an increase in mechanical stiffness and thermal conductivity. Conversely, sound absorption and thermal degradation of the investigated rubber composites decreased with an increase in the filler concentration. It can be also concluded that the rubber composites containing higher concentrations of silica filler showed a higher stiffness to weight ratio, which is one of the great advantages of these materials. Based on the experimental data, it was possible to find a correlation between mechanical stiffness of the tested rubber specimens evaluated using conventional and vibroacoustic measurement techniques. In addition, this paper presents a new methodology to optimize the blowing and vulcanization processes of rubber samples during their production.
Zobrazit více v PubMed
Shizok K. Natural Rubber: From the Odyssey of the Hevea Tree to the Age of Transport. 1st ed. A Smithers Group Company; Shawbury, UK: 2015. pp. 3–4.
Gent A.N., Kawahara S., Zhao J. Crystalization and strength of natural rubber and synthetic cis-1,4 polyisoprene. Rubber Chem. Technol. 1998;71:668–678. doi: 10.5254/1.3538496. DOI
Parrella F.W., Gaspari A.A. Natural rubber latex protein reduction with an emphasis on enzyme treatment. Methods. 2002;27:77–86. doi: 10.1016/S1046-2023(02)00055-5. PubMed DOI
Nie Y., Gu Z., Wei Y., Hao T., Zhou Z. Features of strain-induced crystallization of natural rubber revealed by experiments and simulations. Polym. J. 2017;49:309–317. doi: 10.1038/pj.2016.114. DOI
Chenal J.-M., Gauthier C., Chazeaur L., Guy L., Bomaly Y. Parameters governing strain induced crystallization in filled natural rubber. Polymer. 2007;48:6893–6901. doi: 10.1016/j.polymer.2007.09.023. DOI
Sarkawi S., Dierkes W.K., Noordermeer J.W.M. Reinforcement of natural rubber by precipitated silica: The influence of processing temperature. Rubber Chem. Tech. 2014;87:103–119. doi: 10.5254/rct.13.87925. DOI
Morton M. Rubber Technology. 3rd ed. Springer Science+Business Media; Dordrech, OH, USA: 1999. pp. 30–47.
Alan N.G. Engineering with Rubber—How to Design Rubber Components. 3rd ed. Hanscher Publischers; Ohio, OH, USA: 2012. pp. 18–20.
Thomas S., Stephen R. Rubber Nanocomposites Preparation, Properties and Applications. 1st ed. John Wiley & Sons Pte Ltd.; Singapore: 2010. pp. 21–39.
Hewitt N. Compositeing Precipitated Silica in Elastomers. 1st ed. William Andrew Publishing/Plastics Design Library; New York, NY, USA: 2007. pp. 1–9.
Cassagnau P. Melt rheology of organoclay and fumed silica nanocomposites. Polymer. 2008;49:2183–2196. doi: 10.1016/j.polymer.2007.12.035. DOI
Wilgis T.A., Heinrich G.K. Reinforcement of Polymer Nano-Composites—Theory, Experiments and Applications. 1st ed. Cambridge University Press; Cambridge, UK: 2009. pp. 96–100.
Leung S.N., Wong A., Park C.B., Zhong J.H. Ideal surface geometries of nucleating agents to enhance cell nucleation in polymeric foaming processes. J. Appl. Polym. Sci. 2008;108:3997–4003. doi: 10.1002/app.28038. DOI
Arthur H.L. Handbook of Plastics Foams. 1st ed. Elsevier Books; Cambridge, UK: 1995. pp. 246–250.
Nijib N.N., Ariff Z.M., Manan N.A., Bakar A.A., Sipaut C.S. Effect of blowing agent concentration on cell morphology and impact properties of natural rubber foam. J. Phys. Sci. 2009;20:13–25.
Gayathri R., Vasanthakumari R., Padmanabhan C. Sound absorption, thermal and mechanical behavior of polyurethane foam modified with nano silica, nano clay and crumb rubber fillers. Int. J. Sci. Eng. Res. 2013;4:301–308.
Pang Y., Cao Y., Zheng W., Park C.B. A comprehensive review of cell structure variation and general rules for polymer microcellular foams. Chem. Eng. J. 2021;430:132662. doi: 10.1016/j.cej.2021.132662. DOI
Park C.B., Baldwin D.F., Suh N.P. Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polym. Eng. Sci. 1995;35:432–440. doi: 10.1002/pen.760350509. DOI
Bayat H., Fasihi M., Zare Y., Rhee K.Y. An experimental study on one-step and two-step foaming of natural rubber/silica nanocomposites. Nanotechnol. Rev. 2020;9:427–435. doi: 10.1515/ntrev-2020-0032. DOI
Sun X., Zhang G., Zhang G., Shi Q., Tang B., Wu Z. Study on foaming water-swellable EPDM rubber. J. App. Polym. Sci. 2002;84:3712–3717. doi: 10.1002/app.11381. DOI
Panploo K., Chalermsinsuwan B., Poompradus S. Natural rubber latex foam with particulate fillers for carbon dioxide adsorption and regeneration. RSC Adv. 2019;9:28916–28923. doi: 10.1039/C9RA06000F. PubMed DOI PMC
Sombatsompop N., Thongsang S., Markpin T., Wimolmala E. Fly ash particles and precipitated silica as fillers in rubbers. I. Untreated fillers in natural rubber and styrene–butadiene rubber compounds. J. Appl. Polym. Sci. 2004;93:2119–2130. doi: 10.1002/app.20693. DOI
Rodriguez-Vear R., Genovese K., Rayas J.A., Mendoza-Santoyo F. Vibration Analysis at Microscale by Talbot Fringe Projection Method. Strain. 2009;45:249–258. doi: 10.1111/j.1475-1305.2008.00611.x. DOI
Prasopdee T., Smitthipong W. Effect of fillers on the recovery of rubber foam: From theory to applications. Polymer. 2020;12:2745. doi: 10.3390/polym12112745. PubMed DOI PMC
Rao S.S. Mechanical Vibrations. 5th ed. Pearson Education, Inc.; Upper Saddle River, NJ, USA: 2011. pp. 281–287.
Carrella A., Brennan M.J., Waters T.P., Lopes V., Jr. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 2012;55:22–29. doi: 10.1016/j.ijmecsci.2011.11.012. DOI
Liu K., Liu J. The damped dynamic vibration absorbers: Revisited and next result. J. Sound Vib. 2005;284:1181–1189. doi: 10.1016/j.jsv.2004.08.002. DOI
Stephen N. On energy harvesting from ambient vibration. J. Sound Vib. 2006;293:409–425. doi: 10.1016/j.jsv.2005.10.003. DOI
Vette A.H., Wu N., Masani K., Popovic M.R. Low-intensity functional electrical stimulation can increase multidirectional trunk stiffness in able-bodied individuals during sitting. Med. Eng. Phys. 2015;37:777–782. doi: 10.1016/j.medengphy.2015.05.008. PubMed DOI
Sgard F., Castel F., Atalla N. Use of a hybrid adaptive finite element/modal approach to assess the sound absorption of porous materials with meso-heterogeneities. Appl. Acoust. 2011;72:157–168. doi: 10.1016/j.apacoust.2010.10.011. DOI
Tiwari W., Shukla A., Bose A. Acoustic properties of cenosphere reinforced cement and asphalt concrete. Appl. Acoust. 2004;65:263–275. doi: 10.1016/j.apacoust.2003.09.002. DOI
Okudaira Y., Kurihara Y., Ando H., Satoh M., Miyanami K. Sound absorption measurements for evaluating dynamic physical properties of a powder bad. Powder Tech. 1993;77:39–48. doi: 10.1016/0032-5910(93)85005-T. DOI
Yanagida T., Matchett A.J., Coulthard J.M., Asmar B.N., Langston P.A., Walters J.K. Dynamic measurements for the stiffness of loosely packed powder beds. AIChE J. 2002;48:2510–2517. doi: 10.1002/aic.690481110. DOI
International Organization for Standardization . ISO 10534-2, Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method. CEN, European Committee for Standardization; Brussels, Belgium: 1998. pp. 10534–10542. ISO/TC 43/SC2 Building Acoustics.
Han F.S., Seiffert G., Zhao Y.Y., Gibbs B. Acoustic absorption behaviour of an open-celled alluminium foam. J. Phys. D Appl. Phys. 2003;36:294–302. doi: 10.1088/0022-3727/36/3/312. DOI
Júnior J.H.S.A., Júnior H.L.O., Amico S.C., Amado F.D.R. Study of hybrid intralaminate curaua/glass composites. Mater. Des. 2012;42:111–117. doi: 10.1016/j.matdes.2012.05.044. DOI
Rajoria H., Jalili N. Passive Vibration Damping Enhancement using Carbon Nanotube-epoxy Reinforced Composites. Compos. Sci. Tech. 2005;65:2079–2093. doi: 10.1016/j.compscitech.2005.05.015. DOI
Kalauni K., Pawar S.J. A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials. J. Porous Mater. 2019;26:1795–1819. doi: 10.1007/s10934-019-00774-2. DOI
Advanced Materials Structures for Sound and Vibration Damping