Influence of 3D Printing Topology by DMLS Method on Crack Propagation

. 2021 Dec 06 ; 14 (23) : . [epub] 20211206

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34885639

The presented text deals with research into the influence of the printing layers' orientation on crack propagation in an AlSi10Mg material specimen, produced by additive technology, using the Direct Metal Laser Sintering (DMLS) method. It is a method based on sintering and melting layers of powder material using a laser beam. The material specimen is presented as a Compact Tension test specimen and is printed in four different defined orientations (topology) of the printing layers-0°, 45°, 90°, and twice 90°. The normalized specimen is loaded cyclically, where the crack length is measured and recorded, and at the same time, the crack growth rate is determined. The evaluation of the experiment shows an apparent influence of the topology, which is essential especially for possible use in the design and technical preparation of the production of real machine parts in industrial practice. Simultaneously with the measurement results, other influencing factors are listed, especially product postprocessing and the measurement method used. The hypothesis of crack propagation using Computer Aided Engineering/Finite Element Method (CAE/FEM) simulation is also stated here based on the achieved results.

Zobrazit více v PubMed

Achillas C., Aidonis D., Iakovou E., Thymianidis M., Tzetzis D. A methodological framework for the inclusion of modern additive manufacturing into the production portfolio of a focused factory. J. Manuf. Syst. 2015;37:328–339. doi: 10.1016/j.jmsy.2014.07.014. DOI

Contaldi V., Del Re F., Palumbo B., Squillace A., Corrado P., Di Petta P. Mechanical characterisation of stainless steel parts produced by direct metal laser sintering with virgin and reused powder. Int. J. Adv. Manuf. Technol. 2019;105:3337–3351. doi: 10.1007/s00170-019-04416-4. DOI

Simchi A., Petzoldt F., Pohl H. On the development of direct metal laser sintering for rapid tooling. J. Mater. Process. Technol. 2003;141:319–328. doi: 10.1016/S0924-0136(03)00283-8. DOI

Grünberger T., Domröse R. Direct Metal Laser Sintering: Identification of process phenomena by optical in-process monitoring. Laser Tech. J. 2015;12:45–48. doi: 10.1002/latj.201500007. DOI

Manfredi D., Ambrosio E.P., Calignano F., Krishnan M., Canali R., Biamino S., Pavese M., Atzeni E., Iuliano L., Fino P. Direct metal laser sintering: An additive manufacturing technology ready to produce lightweight structural parts for robotic applications. Metall. Ital. 2013;10:15–24.

Dvorak K., Zárybnická L., Dvorakova J. Quality Parameters of 3D Print Products by the DMLS Method. Manuf. Technol. 2019;19:209–215. doi: 10.21062/ujep/271.2019/a/1213-2489/MT/19/2/209. DOI

Vilaro T., Abed S., Knapp W. Direct manufacturing of technical parts using selective laser melting: Example of automotive application; Proceedings of the 12th European Forum on Rapid Prototyping; Paris, France. 5–6 March 2008.

Tiwari S.K., Pande S., Agrawal S., Bobade S. Selection of selective laser sintering materials for different applications. Rapid Prototyp. J. 2015;21:630–648. doi: 10.1108/RPJ-03-2013-0027. DOI

Lewandowski J.J., Seifi M. Metal Additive Manufacturing: A Review of Mechanical Properties. Annu. Rev. Mater. Res. 2016;46:151–186. doi: 10.1146/annurev-matsci-070115-032024. DOI

Liu S., Zhu H., Peng G., Yin J., Zeng X. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater. Des. 2018;142:319–328. doi: 10.1016/j.matdes.2018.01.022. DOI

Fousová M., Dvorský D., Michalcová A., Vojtěch D. Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures. Mater. Charact. 2018;137:119–126. doi: 10.1016/j.matchar.2018.01.028. DOI

Dai D., Gu D., Zhang H., Xiong J., Ma C., Hong C., Poprawe R. Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts. Opt. Laser Technol. 2018;99:91–100. doi: 10.1016/j.optlastec.2017.08.015. DOI

Brandl E., Heckenberger U., Holzinger V., Buchbinder D. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 2012;34:159–169. doi: 10.1016/j.matdes.2011.07.067. DOI

Bagherifard S., Beretta N., Monti S., Riccio M., Bandini M., Guagliano M. On the fatigue strength enhancement of additive manufactured AlSi10Mg parts by mechanical and thermal post-processing. Mater. Des. 2018;145:28–41. doi: 10.1016/j.matdes.2018.02.055. DOI

Fan K., Liu X., He G., Chen H. Elevated temperature low cycle fatigue of a gravity casting Al–Si–Cu alloy used for engine cylinder heads. Mater. Sci. Eng. A. 2015;632:127–136. doi: 10.1016/j.msea.2015.02.069. DOI

Jeong C.-Y. High temperature mechanical properties of Al–Si–Mg–(Cu) alloys for automotive cylinder heads. Mater. Trans. 2013;54:588–594. doi: 10.2320/matertrans.M2012285. DOI

Mierzejewska Ż.A., Hudák R., Sidun J. Mechanical Properties and Microstructure of DMLS Ti6Al4V Alloy Dedicated to Biomedical Applications. Materials. 2019;12:176. doi: 10.3390/ma12010176. PubMed DOI PMC

Croccolo D., De Agostinis M., Fini S., Olmi G., Bogojevic N., Ciric-Kostic S. Effects of build orientation and thickness of allowance on the fatigue behaviour of 15-5 PH stainless steel manufactured by DMLS. Fatigue Fract. Eng. Mater. Struct. 2017;41:900–916. doi: 10.1111/ffe.12737. DOI

Raj B.A., Jappes J.W., Khan M.A., Dillibabu V., Brintha N. Direct metal laser sintered (DMLS) process to develop Inconel 718 alloy for turbine engine components. Optik. 2020;202:163735. doi: 10.1016/j.ijleo.2019.163735. DOI

Guzanová A., Ižaríková G., Brezinová J., Živčák J., Draganovská D., Hudák R. Influence of Build Orientation, Heat Treatment, and Laser Power on the Hardness of Ti6Al4V Manufactured Using the DMLS Process. Metals. 2017;7:318. doi: 10.3390/met7080318. DOI

Mallik M.K., Seshagirirao D.V., Padmaja K.J., Mani B.A., Pavan S., Bhagyasri P. IOP Conference Series: Materials Science and Engineering. Volume 1112. IOP Publishing; Bristol, UK: 2021. Comparison of Effect of Orientation on SS304 and SS316 Material Samples Fabricated with DMLS Technology; p. 12014.

Jurenka J., Španiel M., Kuželka J. Simulation of Fatique Crack Propagation under Contact Loading Conditions; Proceedings of the 17th International Conference Engineering Mechanics; Svratka, Czech Republic. 9–12 May 2011; pp. 255–258.

Wei K., Yang Q., Yang X., Tao Y., Xie H., Qu Z., Fang D. Mechanical analysis and modeling of metallic lattice sandwich additively fabricated by selective laser melting. Thin-Walled Struct. 2020;146:106189. doi: 10.1016/j.tws.2019.106189. DOI

Ebrahimi A., Mohammadi M. Numerical tools to investigate mechanical and fatigue properties of additively manufactured MS1-H13 hybrid steels. Addit. Manuf. 2018;23:381–393. doi: 10.1016/j.addma.2018.07.009. DOI

Renishaw AlSi10Mg-0403 Powder for Additive Manufacturing. [(accessed on 16 October 2021)]. Available online: https://www.renishaw.com/en/data-sheets-additive-manufacturing--17862.

Maamoun A.H., Xue Y.F., Elbestawi M.A., Veldhuis S.C. The Effect of Selective Laser Melting Process Parameters on the Microstructure and Mechanical Properties of Al6061 and AlSi10Mg Alloys. Materials. 2019;12:12. doi: 10.3390/ma12010012. PubMed DOI PMC

CSN ISO 12108: Kovové Materiály-Zkoušení Únavy-Metoda Růstu Únavové Trhliny. [(accessed on 11 February 2021)]. Available online: https://www.iso.org/standard/73809.html.

CSN EN ISO 6892-1: Testování Tahových Vlastností pro Kovové Materiály. [(accessed on 11 February 2021)]. Available online: https://www.iso.org/standard/78322.html.

Zhu Y., Zou J., Yang H.-Y. Wear performance of metal parts fabricated by selective laser melting: A literature review. J. Zhejiang Univ. A. 2018;19:95–110. doi: 10.1631/jzus.A1700328. DOI

Atzeni E., Barletta M., Calignano F., Iuliano L., Rubino G., Tagliaferri V. Abrasive Fluidized Bed (AFB) finishing of AlSi10Mg substrates manufactured by Direct Metal Laser Sintering (DMLS) Addit. Manuf. 2016;10:15–23. doi: 10.1016/j.addma.2016.01.005. DOI

Leon A., Aghion E. Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM) Mater. Charact. 2017;131:188–194. doi: 10.1016/j.matchar.2017.06.029. DOI

Lesperance X., Ilie P., Ince A. Very high cycle fatigue characterization of additively manufactured AlSi10Mg and AlSi7Mg aluminium alloys based on ultrasonic fatigue testing. Fatigue Fract. Eng. Mater. Struct. 2021;44:876–884. doi: 10.1111/ffe.13406. DOI

Glodež S., Klemenc J., Zupanič F., Vesenjak M. High-cycle fatigue and fracture behaviours of SLM AlSi10Mg alloy. Trans. Nonferrous Met. Soc. China. 2020;30:2577–2589. doi: 10.1016/S1003-6326(20)65403-6. DOI

Maiya P.S., Busch D.E. Effect of surface roughness on low-cycle fatigue behavior of type 304 stainless steel. Metall. Trans. A. 1975;6:1761. doi: 10.1007/BF02642305. DOI

Ryu J.H., Nam S.W. Effect of surface roughness on low-cycle fatigue life of Cr Mo V steel at 550 °C. Int. J. Fatigue. 1989;11:433–436. doi: 10.1016/0142-1123(89)90183-7. DOI

Murakami Y., Beretta S. Small Defects and Inhomogeneities in Fatigue Strength: Experiments, Models and Statistical Implications. Extremes. 1999;2:123–147. doi: 10.1023/A:1009976418553. DOI

Beretta S., Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. Int. J. Fatigue. 2017;94:178–191. doi: 10.1016/j.ijfatigue.2016.06.020. DOI

Pola A., Battini D., Tocci M., Avanzini A., Girelli L., Petrogalli C., Gelfi M. Evaluation on the fatigue behavior of sand-blasted AlSi10Mg obtained by DMLS. Fratt. Integrità Strutt. 2019;13:775–790. doi: 10.3221/IGF-ESIS.49.69. DOI

Hitzler L., Hirsch J., Schanz J., Heine B., Merkel M., Hall W., Öchsner A. Fracture toughness of selective laser melted AlSi10Mg. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019;233:615–621. doi: 10.1177/1464420716687337. DOI

Xu Z., Liu A., Wang X. Fatigue performance and crack propagation behavior of selective laser melted AlSi10Mg in 0°, 15°, 45° and 90° building directions. Mater. Sci. Eng. A. 2021;812:141141. doi: 10.1016/j.msea.2021.141141. DOI

Thijs L., Kempen K., Kruth J.-P., Van Humbeeck J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013;61:1809–1819. doi: 10.1016/j.actamat.2012.11.052. DOI

Manfredi D., Calignano F., Krishnan M., Canali R., Ambrosio E.P., Atzeni E. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering. Materials. 2013;6:856–869. doi: 10.3390/ma6030856. PubMed DOI PMC

Yu T., Hyer H., Sohn Y., Bai Y., Wu D. Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting. Mater. Des. 2019;182:108062. doi: 10.1016/j.matdes.2019.108062. DOI

Zhou L., Mehta A., Schulz E., McWilliams B., Cho K., Sohn Y. Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment. Mater. Charact. 2018;143:5–17. doi: 10.1016/j.matchar.2018.04.022. DOI

AlRedha S., Shterenlikht A., Mostafavi M., Van Gelderen D., Lopez-Botello O.E., Reyes L.A., Zambrano P., Garza C. Effect of build orientation on fracture behaviour of AlSi10Mg produced by selective laser melting. Rapid Prototyp. J. 2020;27:112–119. doi: 10.1108/RPJ-02-2020-0041. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...