Questions about the role of P3HT nanoparticles in retinal stimulation
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu dopisy, komentáře
Grantová podpora
P30 EY026877
NEI NIH HHS - United States
PubMed
34887532
PubMed Central
PMC10789482
DOI
10.1038/s41565-021-01044-6
PII: 10.1038/s41565-021-01044-6
Knihovny.cz E-zdroje
Zobrazit více v PubMed
Maya-Vetencourt JF et al. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. Nat. Nanotechnol. 15, 698–708 (2020). PubMed
Delori FC, Webb RH & Sliney DH Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J. Opt. Soc. Am. A 24, 1250–1265 (2007). PubMed
American National Standard for Safe Use of Lasers ANSI Z136.1–2007 (American National Standards Institute, Inc., 2007).
Feyen P et al. Light-evoked hyperpolarization and silencing of neurons by conjugated polymers. Sci. Rep. 6, 22718 (2016). PubMed PMC
Hyun NG, Hyun KH, Lee K & Kaang BK Temperature dependence of action potential parameters in Aplysia neurons. Neurosignals 20, 252–264 (2012). PubMed
Money TG, Anstey ML & Robertson RM Heat stress-mediated plasticity in a locust looming-sensitive visual interneuron. J. Neurophysiol. 93, 1908–1919 (2005). PubMed
Lorach H et al. Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21, 476–482 (2015). PubMed PMC
Mandel Y et al. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat. Commun. 4, 1980 (2013). PubMed PMC
Corna A, Herrmann T & Zeck G Electrode-size dependent thresholds in subretinal neuroprosthetic stimulation. J. Neural Eng. 15, 045003 (2018). PubMed
Daschner R, Rothermel A, Rudorf R, Rudorf S & Stett A Functionality and performance of the subretinal implant chip Alpha AMS. Sensor Mater. 30, 179–192 (2018).
Mathieson K et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photon. 6, 391–397 (2012). PubMed PMC
Ho E et al. Characteristics of prosthetic vision in rats with subretinal flat and pillar electrode arrays. J. Neural Eng. 16, 066027 (2019). PubMed PMC
Chiguvare Z, Parisi J & Dyakonov V Influence of thermal annealing on the electrical properties of poly(3-hexylthiophene)-based thin film diodes. Z. Naturforsch. A 62, 609–619 (2007).
Wei RB, Gryszel M, Migliaccio L & Glowacki ED Tuning photoelectrochemical performance of poly(3-hexylthiophene) electrodes via surface structuring. J. Mater. Chem. C 8, 10897–10906 (2020).
Sherwood CP et al. Organic semiconductors for optically triggered neural interfacing: the impact of device architecture in determining response magnitude and polarity. IEEE J. Sel. Top. Quant. Elect. 27, 1–12 (2021).
Ferlauto L et al. Design and validation of a foldable and photovoltaic wide-field epiretinal prosthesis. Nat. Commun. 9, 992 (2018). PubMed PMC
Werginz P, Benav H, Zrenner E & Rattay F Modeling the response of ON and OFF retinal bipolar cells during electric stimulation. Vision Res. 111, 170–181 (2015). PubMed PMC
Lorach H et al. Interactions of prosthetic and natural vision in animals with local retinal degeneration. Invest. Ophthalmol. Vis. Sci. 56, 7444–7450 (2015). PubMed PMC
Arens-Arad T et al. Cortical interactions between prosthetic and natural vision. Curr. Biol. 30, 176–182 (2019). PubMed PMC
Maya-Vetencourt JF et al. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat. Mater. 16, 681 (2017). PubMed PMC
Chenais NAL, Leccardi M & Ghezzi D Capacitive-like photovoltaic epiretinal stimulation enhances and narrows the network-mediated activity of retinal ganglion cells by recruiting the lateral inhibitory network. J. Neural Eng. 16, 066009 (2019). PubMed
Chenais NAL, Leccardi MJIA & Ghezzi D Photovoltaic retinal prosthesis restores high-resolution responses to single-pixel stimulation in blind retinas. Commun. Mater. 2, 28 (2021).