Correlation between acoustic divergence and phylogenetic distance in soniferous European gobiids (Gobiidae; Gobius lineage)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu srovnávací studie, časopisecké články
PubMed
34890403
PubMed Central
PMC8664166
DOI
10.1371/journal.pone.0260810
PII: PONE-D-21-00246
Knihovny.cz E-zdroje
- MeSH
- akustika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- genetická variace MeSH
- ryby klasifikace genetika fyziologie MeSH
- sekvenční analýza DNA MeSH
- stochastické procesy MeSH
- vokalizace zvířat fyziologie MeSH
- zvířata MeSH
- zvuk MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
In fish, species identity can be encoded by sounds, which have been thoroughly investigated in European gobiids (Gobiidae, Gobius lineage). Recent evolutionary studies suggest that deterministic and/or stochastic forces could generate acoustic differences among related animal species, though this has not been investigated in any teleost group to date. In the present comparative study, we analysed the sounds from nine soniferous gobiids and quantitatively assessed their acoustic variability. Our interspecific acoustic study, incorporating for the first time the representative acoustic signals from the majority of soniferous gobiids, suggested that their sounds are truly species-specific (92% of sounds correctly classified into exact species) and each taxon possesses a unique set of spectro-temporal variables. In addition, we reconstructed phylogenetic relationships from a concatenated molecular dataset consisting of multiple molecular markers to track the evolution of acoustic signals in soniferous gobiids. The results of this study indicated that the genus Padogobius is polyphyletic, since P. nigricans was nested within the Ponto-Caspian clade, while the congeneric P. bonelli turned out to be a sister taxon to the remaining investigated soniferous species. Lastly, by extracting the acoustic and genetic distance matrices, sound variability and genetic distance were correlated for the first time to assess whether sound evolution follows a similar phylogenetic pattern. The positive correlation between the sound variability and genetic distance obtained here emphasizes that certain acoustic features from representative sounds could carry the phylogenetic signal in soniferous gobiids. Our study was the first attempt to evaluate the mutual relationship between acoustic variation and genetic divergence in any teleost fish.
Department of Chemistry Biology and Biotechnologies University of Perugia Perugia Italy
Department of Ecology Charles University Prague Czech Republic
Department of Zoology Faculty of Science University of Zagreb Zagreb Croatia
Department of Zoology National Museum Prague Czech Republic
Faculty of Teacher Education University of Zagreb Zagreb Croatia
Zobrazit více v PubMed
Simmons AM. Perspectives and Progress in Animal Acoustic Communication. In: Simmons A, Fay RR, editors. Acoustic Communication. Springer; 2003. pp. 1–4.
Ladich F, Winkler H. Acoustic communication in terrestrial and aquatic vertebrates. J Exp Biol. 2017;220: 2306–2317. doi: 10.1242/jeb.132944 PubMed DOI
Crawford JD, Cook AP, Heberlein AS. Bioacoustic behaviour of African fishes (Mormyridae): potential cues for species and individual recognition in Pollymirus. J Acoust Soc Am. 1997;102: 1200–1212. doi: 10.1121/1.419923 PubMed DOI
Lobel PS. Possible species specific courtship sounds by two sympatric cichlids fishes in Lake Malawi, Africa. Environ Biol Fishes. 1998;52: 443–452.
Amorim MCP, Vasconcelos RO, Fonseca PJ. Fish sounds and mate choice. In: Ladich F, editor. Sound Communication in Fishes. Springer; 2015. pp. 1–35.
Pedroso S, Barber I, Svensson O, Fonseca PJ, Amorim MC. Courtship sounds advertise species identity and male quality in sympatric Pomatoschistus spp. gobies. PLoS One. 2013. doi: 10.1371/journal.pone.0064620 PubMed DOI PMC
Blom EL, Mück I, Heubel K, Svensson O. Acoustic and visual courtship traits in two sympatric marine Gobiidae species—Pomatoschistus microps and Pomatoschistus minutus. Environ Biol Fishes. 2016;99: 999–1007.
Zeyl JN, Malavasi S, Holt DE, Noel P, Lugli M, Johnston CE. Convergent aspects of acoustic communication in darters, sculpins and gobies. In: Sisneros AJ editor. Fish Hearing and Bioacoustics: An Anthology in Honor of Arthur N. Popper and Richard R. Fay. Springer; 2016. pp. 93–120. PubMed
Ritchie MG. Sexual selection and speciation. Annu Rev Ecol Evol Syst. 2007; 38: 79–102.
Seddon N, Botero CA, Tobias JA, Dunn PO, MacGregor HEA, Rubenstein DR, et al.. Sexual selection accelerates signal evolution during speciation in birds. Proc. Biol. Sci. 2013. doi: 10.1098/rspb.2013.1065 PubMed DOI PMC
Wilkins M, Seddon N, Safran R. Evolutionary divergence in acoustic signals: Causes and consequences. Trends Ecol Evol. 2012;28: 156–166. doi: 10.1016/j.tree.2012.10.002 PubMed DOI
Mendelson TC, Martin MD, Flaxman SM. Mutation-order divergence by sexual selection: diversification of sexual signals in similar environments as a first step in speciation. Ecol. Lett. 2014;17: 1053–1066. doi: 10.1111/ele.12313 PubMed DOI
Sun K, Luo L, Kimball RT, Wei X, Jin L, Jiang T, et al.. Geographic variation in the acoustic traits of Greater Horseshoe bats: testing the importance of drift and ecological selection in evolutionary processes. PloS One. 2013. doi: 10.1371/journal.pone.0070368 PubMed DOI PMC
Amorim MCP, Vasconcelos RO, Bolgan M, Pedroso SS, Fonseca PJ. Acoustic communication in marine shallow waters: Testing the acoustic adaptive hypothesis in sand gobies. J Exp Biol. 2018. doi: 10.1242/jeb.183681 PubMed DOI
Grzywacz B, Heller KG, Warchałowska-Śliwa E, Karamysheva T, Chobanov D. Evolution and systematics of Green Bush-crickets (Orthoptera: Tettigoniidae: Tettigonia) in the Western Palaearctic: testing concordance between molecular, acoustic, and morphological data. Org Divers Evol. 2017;17: 213–228.
Mélotte G, Raick X, Regis V, Parmentier E. Origin and evolution of sound production in Serrasalmidae. Biol J Linn Soc. 2019;128: 403–414.
Boul KE, Funk WC, Darst CR, Cannatella DC, Ryan MJ. Sexual selection drives speciation in an Amazonian frog. Proc R Soc B: Biol Sci. 2007;274: 399–406. PubMed PMC
Puechmaille SJ, Borissov IM, Zsebok S, Allegrini B, Hizem M, Kuenzel S, et al.. Female mate choice can drive the evolution of high frequency echolocation in bats: a case study with Rhinolophus mehelyi. PloS One. 2014. doi: 10.1371/journal.pone.0103452 PubMed DOI PMC
Sulbarán MDE, Simões P, Gonzalez-Voyer A, Castroviejo-Fisher S. Neotropical frogs and mating songs: The evolution of advertisement calls in glassfrogs. J Evol Biol. 2018;32: 163–176. doi: 10.1111/jeb.13406 PubMed DOI
Irwin D, Thimgan M, Irwin J. Call divergence is correlated with geographic and genetic distance in Greenish Warblers (Phylloscopus trochiloides): a strong role for stochasticity in signal evolution? J Evol Biol. 2008;21: 435–48. doi: 10.1111/j.1420-9101.2007.01499.x PubMed DOI
Jones G. Acoustic signals and speciation: the roles of natural and sexual selection in the evolution of cryptic species. Adv Study Behav. 1997;26: 317–354.
Mendelson TC, Shaw KL. Sexual behaviour: rapid speciation in an arthropod. Nature. 2005;433: 375–376. doi: 10.1038/433375a PubMed DOI
Clegg SM, Degnan SM, Moritz C, Estoup A, Kikkawa J, Owens IPF. Microevolution in island forms: the roles of drift and directional selection in morphological divergence of a passerine bird. Evolution. 2002;56: 2090–2099. doi: 10.1111/j.0014-3820.2002.tb00134.x PubMed DOI
Uyeda JC, Arnold SJ, Hohenlohe PA, Mead LS. Drift promotes speciation by sexual selection. Evolution. 2009;63: 583–594. doi: 10.1111/j.1558-5646.2008.00589.x PubMed DOI PMC
Lee KH, Shaner PJ, Lin YP, Lin SM. Geographic variation in advertisement calls of a Microhylid frog—testing the role of drift and ecology. Ecol Evol. 2016;6: 3289–3298. doi: 10.1002/ece3.2116 PubMed DOI PMC
Päckert M, Martens J, Sun Y, Veith M. The radiation of the Seicercus burkii complex and its congeners (Aves: Sylviidae): molecular genetics and bioacoustics. Org Divers Evol. 2004;4: 341–364.
Percy D, Taylor G, Kennedy M. Psyllid communication: acoustic diversity, mate recognition and phylogenetic signal. Invertebr Syst. 2006;20: 431–445.
Toews D, Irwin D. Cryptic speciation in a Holarctic passerine revealed by genetic and bioacoustic analyses. Mol Ecol. 2008;17: 2691–705. doi: 10.1111/j.1365-294X.2008.03769.x PubMed DOI
Thinh VN, Hallam C, Roos C, Hammerschmidt K. Concordance between vocal and genetic diversity in crested gibbons. BMC Evol Biol. 2011. doi: 10.1186/1471-2148-11-36 PubMed DOI PMC
Velásquez JN, Marambio J, Brunetti E, Méndez MA, Vásquez RA, Penna M. Bioacoustic and genetic divergence in a frog with a wide geographical distribution. Biol J Linn Soc. 2009;110: 142–155.
MacDougall-Shackleton E, MacDougall-Shackleton S. Cultural and genetic evolution in mountain whitecrowned sparrows: song dialects are associated with population structure. Evolution. 2001. doi: 10.1111/j.0014-3820.2001.tb00769.x PubMed DOI
Christiansons S, Swallow J, Wilkinson G. Rapid evolution of postzygotic reproductive isolation in stalk-eyed flies. Evolution. 2005;59, 849–857. PubMed
Horvatić S, Cavraro F, Zanella D, Malavasi S. Sound production in the Ponto-Caspian goby Neogobius fluviatilis and acoustic affinities within the Gobius lineage: implications for phylogeny. Biol J Linn Soc. 2015;17: 564–573.
Amorim MCP, Neves, ASM. Acoustic signalling during courtship in the painted goby, Pomatoschistus pictus. J Mar Biol Assoc UK. 2007;87: 1017–1023.
Amorim MCP, Pedroso SS, Bolgan M, Jordão JM, Caiano M, Fonseca PJ. Painted gobies sing their quality out loud: Acoustic rather than visual signals advertise male quality and contribute to mating success. Funct Ecol. 2012;27: 289–298.
Parmentier E, Petrinisec M, Fonseca PJ, Amorim MCP. Sound-production mechanism in Pomatoschistus pictus. J Exp Biol. 2017;220: 4374–4376. doi: 10.1242/jeb.164863 PubMed DOI
Parmentier E, Kéver L, Boyle K, Corbisier Y, Sawelew L, Malavasi S. Sound production mechanism in Gobius paganellus (Gobiidae). J Exp Biol. 2013;216: 3189–3199. doi: 10.1242/jeb.087205 PubMed DOI
Nelson JS, Grande TC, Wilson MV. Fishes of the World. 5th ed. Wiley; 2016. pp. 1–12.
Kuang T, Tornabene L, Li J, Jiang J, Chakrabarty P, Sparks JS. Phylogenomic analysis on the exceptionally diverse fish clade Gobioidei (Actinopterygii: Gobiiformes) and data-filtering based on molecular clocklikeness. Mol Phylogenetics Evol. 2018;128: 192–202. PubMed
McCraney WT, Thacker CE, Alfaro ME. Supermatrix phylogeny resolves goby lineages and reveals unstable root of Gobiaria. Mol Phylogenetics Evol. 2020;151: 106862. doi: 10.1016/j.ympev.2020.106862 PubMed DOI
Thacker CE. Phylogeny of Gobioidei and placement within Acantomorpha with a new classification and investigation of diversification and character evolution. Copeia. 2009;2009: 93–104.
Agorreta A, San Mauro D, Schliewen U, Van Tassell JL, Kovačić M, Zardoya R, et al.. Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Mol Phylogenet Evol. 2013;69: 619–633. doi: 10.1016/j.ympev.2013.07.017 PubMed DOI
Thacker CE, Roje DM. Phylogeny of Gobiidae and identification of gobiid lineages. Syst Biodivers. 2011;9: 329–347.
Kovačić M, Šanda R. A new species of Gobius (Perciformes: Gobiidae) from the Mediterranean Sea and the redescription of Gobius bucchichi. J Fish Biol. 2016;88: 1104–1124. doi: 10.1111/jfb.12883 PubMed DOI
Iglésias SP, Vukić J, Sellos DY, Soukupová T, Šanda R. Gobius xoriguer, a new offshore Mediterranean goby (Gobiidae), and phylogenetic relationships within the genus Gobius. Ichthyol Res. 2021;68: 445–459. doi: 10.1007/s10228-020-00797-9 DOI
Neilson ME, Stepien CA. Escape from the Ponto-Caspian: evolution and biogeography of an endemic goby species flock (Benthophilinae: Gobiidae: Teleostei). Mol Phylogenet Evol. 2009;52: 84–102. doi: 10.1016/j.ympev.2008.12.023 PubMed DOI
Malavasi S, Collatuzzo S, Torricelli P. Interspecific variation of acoustic signals in Mediterranean gobies (Perciformes, Gobiidae): comparative analysis and evolutionary outlook. Biol J Linn Soc. 2008;93: 763–778.
Horvatić S, Bem L, Malavasi S, Marčić Z, Buj I, Mustafić P, et al.. Comparative analysis of sound production between the bighead goby Ponticola kessleri and the round goby Neogobius melanostomus: Implications for phylogeny and systematics. Environ Biol Fishes. 2019:102: 727–739.
Amorim MCP, Knight ME, Stratoudakis Y, Turner GF. Differences in sounds made by courting males of three closely related Lake Malawi cichlid species. J Fish Biol. 2004;65: 1358–1371.
Amorim MCP, Vasconcelos RO. Variability in the mating calls of the Lusitanian toadfish Halobatrachus didactylus: cues for potential individual recognition J Fish Biol. 2008;73: 1267–1283.
Rice AN, Bass AH. Novel vocal repertoire and paired swimbladders of the three-spined toadfish, Batrachomoeus trispinosus: insights into the diversity of the Batrachoididae. J Exp Biol. 2009;212: 1377–1391. doi: 10.1242/jeb.028506 PubMed DOI PMC
Parmentier E, Lecchini D, Frederich B, Brié C, Mann D. Sound production in four damselfish (Dascyllus) species: Phyletic relationships. Biol J Linn Soc. 2009;97: 928–940.
Melotte G, Vigouroux R, Michel C, Parmentier E. Interspecific variation of warning calls in piranhas: a comparative analysis. Sci Rep. 2016. doi: 10.1038/srep36127 PubMed DOI PMC
Bolgan M, Crucianelli A, Mylonas CC, Henry S, Falguière JC, Parmentier E. Calling activity and calls’ temporal features inform about fish reproductive condition and spawning in three cultured Sciaenidae species. Aquaculture. 2020;524: 735243.
Horvatić S, Malavasi S, Parmentier E, Marčić Z, Buj I, Mustafić P, et al.. Acoustic communication during reproduction in the basal gobioid Amur sleeper and the putative sound production mechanism. J Zool. 2019;309: 269–279.
Miller PJ. Gobiidae I. The Freshwater Fishes of Europe. Wiesbaden: Aula-Verlag; 2003. pp. 157–398.
Miller P.J. Gobiidae II. The Freshwater Fishes of Europe. In: Miller PJ, Economidis PS, editors. Gobiidae II. Wiesbaden: Aula-Verlag; 2004. pp. 157–398.
Kovačić M, Patzner RA. North-Eastern Atlantic and Mediterranean gobies. In: Patzner RA, Van Tassell JL, Kovačić M, Kapoor BG, editors. The Biology of Gobies. Science Publishers, CRC Press; 2011. pp. 177–193.
Jardas I. Jadranska Ihtiofauna. Školska knjiga, Zagreb; 1996. pp. 331–359.
Freyhof J. Diversity and distribution of freshwater gobies from the Mediterranean, the Black and Caspian Seas. In: Patzner RA, Van Tassell JL, Kovačić M, Kapoor BG, editors. The Biology of Gobies. Science Publishers, CRC Press; 2011. pp. 279–288.
Simonovic PD. Phylogenetic relationships of Ponto-Caspian gobies and their relationship to the Atlantic—Mediterranean Gobiinae. J Fish Biol. 1999;54: 533–555.
Kovačić M, Šanda R, Čekovská K, Soukupová T, Vukić J. Zebrus pallaoroi sp. nov.: a new species of goby (Actinopterygii: Gobiidae) from the Mediterranean Sea with a dna-based phylogenetic analysis of the Gobius-lineage. Contrib Zool. 2021;90: 285–317. doi: 10.1163/18759866-bja10018 DOI
Šanda R, Vukić J, Choleva L, Křížek J, Šedivá A, Shumka S, et al.. Distribution of loach fishes (Cobitidae, Nemacheilidae) in Albania, with genetic analysis of populations of Cobitis ohridana. Folia Zool. 2008;57: 42–50.
Akihito, Iwata A, Kobayashi T, Ikeo K, Imanishi T, Ono H, et al.. Evolutionary aspects of gobioid fishes based upon a phylogenetic analysis of mitochondrial cytochrome b genes. Gene. 2000;259: 5–15. doi: 10.1016/s0378-1119(00)00488-1 PubMed DOI
Machordom A, Doadrio I. Evidence of a Cenozoic Betic-Kabilian connection based on freshwater fish phylogeography (Luciobarbus, Cyprinidae). Mol Phylogenet Evol. 2001;18: 252–263. doi: 10.1006/mpev.2000.0876 PubMed DOI
López A, Chen W, Ortí G. Esociform phylogeny. Copeia. 2004;2004: 449–464.
Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN. DNA barcoding Australiás fish species. Philos Trans R Soc Lond B Biol Sci. 2005;360: 1847–1857. doi: 10.1098/rstb.2005.1716 PubMed DOI PMC
Geiger MF, Herder F, Monaghan MT, Almada V, Barbieri R, Bariche M, et al.. Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes. Mol Ecol Resour. 2014;14: 1210–1221. doi: 10.1111/1755-0998.12257 PubMed DOI
Taylor MS, Hellberg ME. Marine radiations at small geographic scales: speciation in Neotropical reef gobies (Elacatinus). Evolution. 2005;59: 374–385. PubMed
Neilson ME, Stepien CA. Evolution and phylogeography of the tubenose goby genus Proterorhinus (Gobiidae: Teleostei): evidence for new cryptic species. Biol J Linn Soc. 2009;96: 664–684.
Thacker CE, Hardman MA. Molecular phylogeny of basal gobioid fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei). Mol Phylogenet Evol. 2005;37: 858–871. doi: 10.1016/j.ympev.2005.05.004 PubMed DOI
Iglésias SP, Frotte L, Sellos DY. Gobius salamansa, a new species of goby (Gobiidae) from the Cape Verde Islands supported by a unique cephalic lateral line systém and DNA barcoding. Ichthyol Res. 2016;63: 356–369.
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41: 95–98.
Simmons MP, Gatesy J. Coalescence vs. concatenation: Sophisticated analyses vs. first principles applied to rooting the angiosperms. Mol Phylogenet Evol. 2012;91: 98–122. PubMed
Tonini J, Moore A, Stern D, Shcheglovitova M, Ortí G. Concatenation and species tree methods exhibit statistically indistinguishable accuracy under a range of simulated conditions. PLOS Currents Tree of Life. 2015. doi: 10.1371/currents.tol.34260cc27551a527b124ec5f6334b6be PubMed DOI PMC
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2016;34: 772–773. PubMed
Lanfear R, Calcott B, Ho SY, Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 2012;29: 1695–1701. doi: 10.1093/molbev/mss020 PubMed DOI
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59: 307–321. doi: 10.1093/sysbio/syq010 PubMed DOI
Ronquist F, Teslenko M, van der Mark P, L Ayres DL, Darling A, Höhna S, et al.. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61: 539–542. doi: 10.1093/sysbio/sys029 PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30: 1312–1313. doi: 10.1093/bioinformatics/btu033 PubMed DOI PMC
Miller MA, Schwartz T, Pickett BE, He S, Klem EB, Scheuermann RH, et al.. A RESTful API for Access to Phylogenetic Tools via the CIPRES Science Gateway. Evol Bioinf. 2015;11: 43–48. doi: 10.4137/EBO.S21501 PubMed DOI PMC
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30: 2725–2729. doi: 10.1093/molbev/mst197 PubMed DOI PMC
Swofford DL. PAUP*. Phylogenetic Analysis Using ParFIny (*and other methods). Version 4.0b10a. Sinauer Associates, Sunderland; 2002.
Lugli M, Torricelli P, Pavan G, Mainardi D. Sound production during courtship and spawning among freshwater gobiids (Pisces, Gobiidae). Mar Freshwater Behav Physiol. 1997;29: 109–126.
Lugli M, Pavan G, Torricelli P, Bobbio L. Spawning vocalizations in male freshwater gobiids (Pisces, Gobiidae). Environ Biol Fish. 1995;43: 219–231.
Lugli M, Torricelli P, Pavan G, Miller PJ. Breeding sounds of male Padogobius nigricans with suggestions for further evolutionary study of vocal behaviour in gobioid fishes. J Fish Biol. 1996;49: 648–657.
Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Research. 1967;27: 209–220. PubMed
Mantel N, Valand RS. A technique of nonparametric multivariate analysis. Biometrics. 1970;26: 547–558. PubMed
Rosenberg MS, Anderson CD. PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods Ecol Evol. 2011;2: 229–232.
Raick X, Huby A, Kurchevski G, Godinho AL, Parmentier É. Use of bioacoustics in species identification: Piranhas from genus Pygocentrus (Teleostei: Serrasalmidae) as a case study. PLoS One. 2020;15: e0241316. doi: 10.1371/journal.pone.0241316 PubMed DOI PMC
Lombarte A, Miletić M, Kovačić M, Otero-Ferrer JL, Tuset VM. Identifying sagittal otoliths of Mediterranean Sea gobies: variability among phylogenetic lineages. J Fish Biol. 2018;92: 1768–1787. doi: 10.1111/jfb.13615 PubMed DOI
Tornabene L, Chen Y, Pezold F. Gobies are deeply divided: phylogenetic evidence from nuclear DNA (Teleostei: Gobioidei: Gobiidae). Syst Biodivers. 2013;11: 1–17.
Lugli M, Yan HY, Fine M. Acoustic communication in two freshwater gobies: The relationship between ambient noise, hearing thresholds and sound spectrum. J Comp Physiol (A). 2003;189: 309–320. doi: 10.1007/s00359-003-0404-4 PubMed DOI
Lugli M, Fine ML. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams. J Acoust Soc Am. 2003;114: 512–521. doi: 10.1121/1.1577561 PubMed DOI
Lugli M, Fine ML. Stream ambient noise, spectrum and propagation of sounds in the goby Padogobius martensii: Sound pressure and particle velocity. J Acoust Soc Am. 2007;122: 2881–2892. doi: 10.1121/1.2783113 PubMed DOI
Wiley RH, Richards DG. Adaptations of acoustic communication in birds: sound transmission and signal detection. In: Kroodsma DE, Miller EH. Acoustic Communication in Birds. Academic Press; 1982. pp. 131–278.
Penzo E, Gandolfi G, Bargelloni L, Colombo L, Patarnello T., Messinian salinity crisis and the origin of freshwater lifestyle in western Mediterranean Gobies. Mol Biol Evol. 1998;15: 1472–1480. doi: 10.1093/oxfordjournals.molbev.a025874 PubMed DOI
Huyse T, Van Houdt J, Volckaert FAM. Paleoclimatic history and vicariant speciation in the ‘sand goby’ group (Gobiidae, Teleostei). Mol Phylogenet Evol. 2004;32: 324–336. doi: 10.1016/j.ympev.2003.11.007 PubMed DOI
Ladich F, Kratochvil H. Sound production in the marmoreal goby Proterorhinus marmoratus (Pallas) (Gobiidae:Teleostei). Zool Jahrb Abt allg Zool Physiol Tiere. 1989;93: 501–504.
Sebastianutto L, Picciulin M, Costantini M, Rocca M, Ferrero E. Four types of sounds from one winner: vocalizationsduring territorial behaviour in the red-mouthed gobyGobiuscruentatus(Pisces, Gobiidae). Acta Ethol. 2008;11: 115–12
Gavrilets S. Perspective: models of speciation: what have we learned in 40 years? Evolution. 2003;57: 2197–2215. doi: 10.1111/j.0014-3820.2003.tb00233.x PubMed DOI
Coyne J A, Orr HA. Speciation. Sinauer, Sunderland; 2004.
Allio R, Donega S, Galtier N, Nabholz B. Large Variation in the Ratio of Mitochondrial to Nuclear Mutation Rate across Animals: Implications for Genetic Diversity and the Use of Mitochondrial DNA as a Molecular Marker. Mol Biol Evol. 2017;34: 2762–2772. doi: 10.1093/molbev/msx197 PubMed DOI
Huttunen S, Aspi J, Schlotterer C, Routtu J, Hoikkala A. Variation in male courtship song traits in Drosophila virilis: the effects of selection and drift on song divergence at the intraspecific level. Behav Genet. 2008;38: 82–92. doi: 10.1007/s10519-007-9173-0 PubMed DOI
Campbell P, Pasch B, Pino JL, Crino OL, Phillips M, Phelps SM. Geographic variation in the songs of neotropical singing mice: testing the relative importance of drift and local adaptation. Evolution. 2010;64: 1955–1972. doi: 10.1111/j.1558-5646.2010.00962.x PubMed DOI
Lachlan RF, Servedio MR. Song learning accelerates allopatric speciation. Evolution. 2004;58: 2049–2063. doi: 10.1111/j.0014-3820.2004.tb00489.x PubMed DOI
Nosil P, Flaxman SM. Conditions for mutation-order speciation. Proc R Soc B: Biol Sci. 2011;278: 399–407. doi: 10.1098/rspb.2010.1215 PubMed DOI PMC
Lynch A. The population memetics of birdsong. In: Kroodsma DE, Miller EH, editors. Ecology and Evolution of Acoustic Communication in Birds. Cornell University Press; 1996. pp. 181–197.
Rendella L, Whitehead H. Culture in whales and dolphins. Behav Brain Sci. 2001;24: 309–382. doi: 10.1017/s0140525x0100396x PubMed DOI
Johnston CE, Buchanan HM. Learned or innate production of acoustic signals in fishes: a test using a cyprinid. Environ Biol Fish. 2007;78: 183–187.
Longrie N, Fine ML, Parmentier E. Innate sound production in the cichlid Oreochromis niloticus. J Zool. 2008;276: 266–275.
Schluter D. Evidence for ecological speciation and its alternative. Science. 2009;323: 737–741. doi: 10.1126/science.1160006 PubMed DOI
Martin MD, Mendelson TC. Signal divergence is correlated with genetic distance and not environmental differences in darters (Percidae: Etheostoma). Evol Biol. 2012;39: 231–241.
Lindner K, Cerwenka AF, Brandner J, Gertzen S, Borcherding J, Geist J, et al.. First evidence for interspecific hybridization between invasive goby species Neogobius fluviatilis and Neogobius melanostomus (Teleostei: Gobiidae: Benthophilinae). J Fish Biol. 2013;82: 2128–2134. doi: 10.1111/jfb.12127 PubMed DOI
Seddon N, Tobias JA. Character displacement from the receiver’s perspective: species and mate recognition despite convergent signals in suboscine birds. Proc Royal Soc. B. 2010;277: 2475–2483. doi: 10.1098/rspb.2010.0210 PubMed DOI PMC
Takemura A. Acoustical behaviour of the freshwater goby Odontobutis obscura. Bull Jpn Soc Sci Fish. 1984;50: 561–564.