• This record comes from PubMed

Reshaping cortical activity with subthalamic stimulation in Parkinson's disease during finger tapping and gait mapped by near infrared spectroscopy

. 2019 Sep ; 17 (3) : 157-166. [epub] 20190911

Status PubMed-not-MEDLINE Language English Country Poland Media print-electronic

Document type Journal Article

Grant support
16-13323S Czech Science foundation GACR - Czech Republic
16-28119a Czech Ministry of Health - Czech Republic
17-32318a Czech Ministry of Health - Czech Republic

Exploration of motor cortex activity is essential to understanding the pathophysiology in Parkinson's Disease (PD), but only simple motor tasks can be investigated using a fMRI or PET. We aim to investigate the cortical activity of PD patients during a complex motor task (gait) to verify the impact of deep brain stimulation in the subthalamic nucleus (DBS-STN) by using Near-Infrared-Spectroscopy (NIRS). NIRS is a neuroimaging method of brain cortical activity using low-energy optical radiation to detect local changes in (de)oxyhemoglobin concentration. We used a multichannel portable NIRS during finger tapping (FT) and gait. To determine the signal activity, our methodology consisted of a pre-processing phase for the raw signal, followed by statistical analysis based on a general linear model. Processed recordings from 9 patients were statistically compared between the on and off states of DBS-STN. DBS-STN led to an increased activity in the contralateral motor cortex areas during FT. During gait, we observed a concentration of activity towards the cortex central area in the "stimulation-on" state. Our study shows how NIRS can be used to detect functional changes in the cortex of patients with PD with DBS-STN and indicates its future use for applications unsuited for PET and a fMRI.

See more in PubMed

Bae SJ, Jang SH, Seo JP, Chang PH (2017). The optimal speed for cortical activation of passive wrist movements performed by a rehabilitation robot: a functional NIRS study. Front Hum Neurosci 11: 194. DOI: 10.3389/fnhum.2017.00194. PubMed DOI

Bick SK, Folley BS, Mayer JS, Park S, Charles PD, Camalier CR, et al. (2016). Subthalamic nucleus deep brain stimulation alters prefrontal correlates of emotion induction. Neuromodulation 20(3): 233-237. DOI: 10.1111/ner.12537. PubMed DOI

Blinkenberg M, Bonde C, Holm S, Svarer C, Andersen J, Paulson OB, Law I (1996). Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. J Cereb Blood Flow Metab 16(5): 794-803. DOI: 10.1097/00004647-199609000-00004. PubMed DOI

Boushel R, Piantadosi CA (2000). Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiol Scand 168(4): 615-622. DOI: 10.1046/j.1365-201x.2000.00713.x. PubMed DOI

Ceballos-Baumann AO, Boecker H, Bartenstein P, Falkenhayn I, Riescher H, Conrad B, et al. (1999). A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Arch Neurol 56(8): 997-1003. DOI: 10.1001/archneur.56.8.997. PubMed DOI

Chang PH, Lee S-H, Gu K-M, Lee S-H, Jin S-H, Yeo SS, et al. (2014). The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study. Front Hum Neurosci 8: 49. DOI: 10.3389/fnhum.2014.00049. PubMed DOI

Cope M, Delpy DT (1988). System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput 26(3): 289-294. DOI: 10.1007/BF02447083. PubMed DOI

Cui X, Bray S, Bryant DM, Glover GH, Reiss AL (2011). A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 54(4): 2808-2821. DOI: 10.1016/j.neuroimage.2010.10.069. PubMed DOI

Derosière G, Alexandre F, Bourdillon N, Mandrick K, Ward TE, Perrey S (2014). Similar scaling of contralateral and ipsilateral cortical responses during graded unimanual force generation. Neuroimage 85: 471-477. DOI: 10.1016/j.neuroimage.2013.02.006. PubMed DOI

Fazli S, Mehnert J, Steinbrink J, Curio G, Villringer A, Müller K-R, Blankertz B (2012). Enhanced performance by a hybrid NIRS-EEG brain computer interface. NeuroImage 59(1): 519-529. DOI: 10.1016/j.neuroimage.2011.07.084. PubMed DOI

Giacometti P, Diamond SG (2013). Compliant head probe for positioning electroencephalography electrodes and near-infrared spectroscopy optodes. J Biomed Opt 18(2): 27005. DOI: 10.1117/1.JBO.18.2.027005. PubMed DOI

Gilat M, Shine JM, Walton CC, O'Callaghan C, Hall JM, Lewis SJ (2015). Brain activation underlying turning in Parkinson's disease patients with and without freezing of gait: a virtual reality fMRI study. NPJ Parkinsons Dis 1: 15020. DOI: 10.1038/npjparkd.2015.20. PubMed DOI

Huang C, Chu H, Zhang Y, Wang X (2018). Deep brain stimulation to alleviate freezing of gait and cognitive dysfunction in Parkinson's disease: update on current research and future perspectives. Front Neurosci 12: 29. DOI: 10.3389/fnins.2018.00029. PubMed DOI

Kawashima R, Inoue K, Sugiura M, Okada K, Ogawa A, Fukuda H (1999). A positron emission tomography study of self-paced finger movements at different frequencies. Neuroscience 92(1): 107-112. DOI: 10.1016/s0306-4522(98)00744-1. PubMed DOI

Kim HY, Seo K, Jeon HJ, Lee U, Lee H (2017). Application of functional near-infrared spectroscopy to the study of brain function in humans and animal models. Mol Cells 40(8): 523-532. DOI: 10.14348/molcells.2017.0153. PubMed DOI

Koenraadt KL, Roelofsen EG, Duysens J, Keijsers NL (2014). Cortical control of normal gait and precision stepping: an fNIRS study. Neuroimage 85: 415-422. DOI: 10.1016/j.neuroimage.2013.04.070. PubMed DOI

Krupicka R, Viteckova S, Cejka V, Klempir O, Szabo Z, Ruzicka E (2017). BradykAn: A motion capture system for objectification of hand motor tests in Parkinson Disease. 2017 E-Health and Bioengineering Conference (EHB): 446-449. DOI: 10.1109/EHB.2017.7995457. DOI

Limousin P, Greene J, Pollak P, Rothwell J, Benabid AL, Frackowiak R (1997). Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's disease. Ann Neurol 42(3): 283-291. DOI: 10.1002/ana.410420303. PubMed DOI

Maidan I, Nieuwhof F, Bernad-Elazari H, Reelick MF, Bloem BR, Giladi N, et al. (2016). The role of the frontal lobe in complex walking among patients with Parkinson's Disease and healthy older adults: an fNIRS study. Neurorehabil Neural Repair 30(10): 963-971. DOI: 10.1177/1545968316650426. PubMed DOI

Martinu K, Nagano-Saito A, Fogel S, Monchi O (2014). Asymmetrical effect of levodopa on the neural activity of motor regions in PD. PLoS One 9(11): e111600. DOI: 10.1371/journal.pone.0111600. PubMed DOI

Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, et al. (2001). Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14(5): 1186-1192. DOI: 10.1006/nimg.2001.0905. PubMed DOI

Morishita T, Higuchi M, Saita K, Tsuboi Y, Abe H, Inoue T (2016). Changes in motor-related cortical activity following deep brain stimulation for Parkinson's Disease detected by functional near infrared spectroscopy: a pilot study. Front Hum Neurosci 10: 629. DOI: 10.3389/fnhum.2016.00629. PubMed DOI

Payoux P, Brefel-Courbon C, Julian A, Durif F, Azulay JP, Blin O, et al. (2007). Motor activity in parkinsonism and levodopa effect: A PET study. J Nucl Med 48(Suppl. 2): 8P.

Perrey S (2014). Possibilities for examining the neural control of gait in humans with fNIRS. Front Physiol 5: 204. DOI: 10.3389/fphys.2014.00204. PubMed DOI

Peterson DS, Pickett KA, Duncan RP, Perlmutter JS, Earhart GM (2014). Brain activity during complex imagined gait tasks in Parkinson disease. Clin Neurophysiol 125(5): 995-1005. DOI: 10.1016/j.clinph.2013.10.008. PubMed DOI

Piper SK, Krueger A, Koch SP, Mehnert J, Habermehl C, Steinbrink J, et al. (2014). A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. Neuroimage 85: 64-71. DOI: 10.1016/j.neuroimage.2013.06.062. PubMed DOI

Rao SM, Bandettini PA, Binder JR, Bobholz JA, Hammeke TA, Stein EA, Hyde JS (1996). Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex. J Cereb Blood Flow Metab 16(6): 1250-1254. DOI: 10.1097/00004647-199611000-00020. PubMed DOI

Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, et al. (2000). Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study. Brain 123(Pt 2): 394-403. DOI: 10.1093/brain/123.2.394. PubMed DOI

Sadato N, Ibañez V, Campbell G, Deiber MP, Le Bihan D, Hallett M (1996). Frequency dependent changes of regional cerebral blood flow during finger movements. J Cereb Blood Flow Metab 16(1): 23-33. DOI: 10.1097/00004647-199601000-00003. PubMed DOI

Sakatani K, Katayama Y, Yamamoto T, Suzuki S (1999). Changes in cerebral blood oxygenation of the frontal lobe induced by direct electrical stimulation of thalamus and globus pallidus: a near infrared spectroscopy study. J Neurol Neurosurg Psychiatry 67(6): 769-773. DOI: 10.1136/jnnp.67.6.769. PubMed DOI

Scholkmann F, Kleiser S, Metz AJ, Zimmermann R, Mata Pavia J, Wolf U, Wolf M (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 85: 6-27. DOI: 10.1016/j.neuroimage.2013.05.004. PubMed DOI

Strangman G, Culver JP, Thompson JH, Boas DA (2002). A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 17(2): 719-731. DOI: 10.1006/nimg.2002.1227. PubMed DOI

Tak S, Ye JC (2014). Statistical analysis of fNIRS data: A comprehensive review. Neuroimage 85: 72-91. DOI: 10.1016/j.neuroimage.2013.06.016. PubMed DOI

Tohka J, Foerde K, Aron AR, Tom SM, Toga AW, Poldrack RA (2008). Automatic independent component labeling for artifact removal in fMRI. Neuroimage 39(3): 1227-1245. DOI: 10.1016/j.neuroimage.2007.10.013. PubMed DOI

Torricelli A, Contini D, Pifferi A, Caffini M, Re R, Zucchelli L, Spinelli L (2014). Time domain functional NIRS imaging for human brain mapping. Neuroimage 85: 28-50. DOI: 10.1016/j.neuroimage.2013.05.106. PubMed DOI

Varriale P, Collomb-Clerc A, Van Hamme A, Perrochon A, Kemoun G, Sorrentino G, et al. (2018). Decreasing subthalamic deep brain stimulation frequency reverses cognitive interference during gait initiation in Parkinson's disease. Clin Neurophysiol 129(11): 2482-2491. DOI: 10.1016/j.clinph.2018.07.013. PubMed DOI

Wilson TW, Kurz MJ, Arpin DJ (2014). Functional specialization within the supplementary motor area: a fNIRS study of bimanual coordination. Neuroimage 85: 445-450. DOI: 10.1016/j.neuroimage.2013.04.112. PubMed DOI

Wu T, Long X, Wang L, Hallett M, Zang Y, Li K, Chan P (2011). Functional connectivity of cortical motor areas in the resting state in Parkinson's disease. Hum Brain Mapp 32(9): 1443-1457. DOI: 10.1002/hbm.21118. PubMed DOI

Xu J, Liu X, Zhang J, Li Z, Wang X, Fang F, Niu H (2015). FC-NIRS: A Functional Connectivity Analysis Tool for Near-Infrared Spectroscopy Data. Biomed Res Int 2015: 248724. DOI: 10.1155/2015/248724. PubMed DOI

Ye J, Tak S, Jang K, Jung J, Jang J (2009). NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. Neuroimage 44(2): 428-447. DOI: 10.1016/j.neuroimage.2008.08.036. PubMed DOI

Zhang X, Noah JA, Hirsch J (2016). Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering. Neurophotonics 3(1): 015004. DOI: 10.1117/1.NPh.3.1.015004. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...