Endothelial-Mesenchymal Transition or Functional Tissue Regeneration - Two Outcomes of Heart Remodeling
Language English Country Czech Republic Media print
Document type Journal Article, Review
PubMed
34918525
PubMed Central
PMC8884377
DOI
10.33549/physiolres.934780
PII: 934780
Knihovny.cz E-resources
- MeSH
- Endothelial Cells physiology MeSH
- Endothelial Progenitor Cells physiology MeSH
- Receptor Cross-Talk MeSH
- Myocytes, Cardiac physiology MeSH
- Humans MeSH
- Regeneration * MeSH
- Ventricular Remodeling * MeSH
- Heart physiology MeSH
- Cell Transdifferentiation * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Heart remodeling occurs as a compensation mechanism for the massive loss of tissue during initial heart failure and the consequent inflammation process. During heart remodeling fibroblasts differentiate to myofibroblasts activate their secretion functions and produce elevated amounts, of extracellular matrix (ECM) proteins, mostly collagen, that form scar tissue and alter the normal degradation of ECM. Scar formation does replace the damaged tissue structurally; however, it impedes the normal contractive function of cardiomyocytes (CMs) and results in long-lasting effects after heart failure. Besides CMs and cardiac fibroblasts, endothelial cells (ECs) and circulating endothelial progenitor cells (cEPCs) contribute to heart repair. This review summarizes the current knowledge of EC-CM crosstalk in cardiac fibrosis (CF), the role of cEPCs in heart regeneration and the contribution of Endothelial-mesenchymal transition (EndoMT).
See more in PubMed
AICHER A, HEESCHEN C, MILDNER-RIHM C, URBICH C, IHLING C, TECHNAU-IHLING K, ZEIHER AM, DIMMELER S. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med. 2003;9:1370–1376. doi: 10.1038/nm948. PubMed DOI
ASAHARA T, KAWAMOTO A, MASUDA H. Concise review: circulating endothelial progenitor cells for vascular medicine. STEM CELLS. 2011;29:1650–1655. doi: 10.1002/stem.745. PubMed DOI
BACHELIER K, BERGHOLZ C, FRIEDRICH EB. Differentiation potential and functional properties of a CD34-CD133+ subpopulation of endothelial progenitor cells. Mol Med Rep. 2020;21:501–507. doi: 10.3892/mmr.2019.10831. PubMed DOI
BADORFF C, BRANDES RP, POPP R, RUPP S, URBICH C, AICHER A, FLEMING I, BUSSE R, ZEIHER AM, DIMMELER S. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation. 2003;107:1024–1032. doi: 10.1161/01.CIR.0000051460.85800.BB. PubMed DOI
BRAUNWALD E. Heart failure. JACC: Heart failure. 2013;1:1–20. doi: 10.1016/j.jchf.2012.10.002. PubMed DOI
CHENG X, WANG L, WEN X, GAO L, LI G, CHANG G, QIN S, ZHANG D. TNAP is a novel regulator of cardiac fibrosis after myocardial infarction by mediating TGF-β/Smads and ERK1/2 signaling pathways. EBioMedicine. 67:2021. doi: 10.1016/j.ebiom.2021.103370. PubMed DOI PMC
CHIRONI G, WALCH L, PERNOLLET M-G, GARIEPY J, LEVENSON J, RENDU F, SIMON A. Decreased number of circulating CD34+KDR+ cells in asymptomatic subjects with preclinical atherosclerosis. Atherosclerosis. 2007;191:115–120. doi: 10.1016/j.atherosclerosis.2006.02.041. PubMed DOI
COLLIVA A, BRAGA L, GIACCA M, ZACCHIGNA S. Endothelial cell-cardiomyocyte crosstalk in heart development and disease. J Physiol. 2020;598:2923–2939. doi: 10.1113/JP276758. PubMed DOI PMC
COMIJN J, BERX G, VERMASSEN P, VERSCHUEREN K, VAN GRUNSVEN L, BRUYNEEL E, MAREEL M, HUYLEBROECK D, van ROY F. The two-handed e box binding zinc finger protein SIP1 downregulates E-Cadherin and induces invasion. Mol Cell. 2001;7:1267–1278. doi: 10.1016/S1097-2765(01)00260-X. PubMed DOI
CRISTÓVÃO G, MILNER J, SOUSA P, VENTURA M, CRISTÓVÃO J, ELVAS L, PAIVA A, GONÇALVES L, RIBEIRO CF, ANTÓNIO N. Improvement in circulating endothelial progenitor cells pool after cardiac resynchronization therapy: increasing the list of benefits. Stem Cell Res Ther. 2020;11:194. doi: 10.1186/s13287-020-01713-8. PubMed DOI PMC
De MELLO WC, DANSER AHJ. Angiotensin II and the heart. Hypertension. 2000;2020;35:1183–1188. doi: 10.1161/01.HYP.35.6.1183. PubMed DOI
DESMOULIÈRE A, GEINOZ A, GABBIANI F, GABBIANI G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122:103–111. doi: 10.1083/jcb.122.1.103. PubMed DOI PMC
FADINI GP. A reappraisal of the role of circulating (progenitor) cells in the pathobiology of diabetic complications. Diabetologia. 2014;57:4–15. doi: 10.1007/s00125-013-3087-6. PubMed DOI
GENTRY LE, NASH BW. The pro domain of pre-pro-transforming growth factor beta 1 when independently expressed is a functional binding protein for the mature growth factor. Biochemistry. 1990;29:6851–6857. doi: 10.1021/bi00481a014. PubMed DOI
GIORDANO FJ, GERBER H-P, WILLIAMS S-P, VANBRUGGEN N, BUNTING S, RUIZ-LOZANO P, GU Y, NATH AK, HUANG Y, HICKEY R, DALTON N, PETERSON KL, ROSS J, CHIEN KR, FERRARA N. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proceedings Nat Acad Sci USA. 2001;98:5780–5785. doi: 10.1073/pnas.091415198. PubMed DOI PMC
GLADKA MM, KOHELA A, MOLENAAR B, VERSTEEG D, KOOIJMAN L, MONSHOUWER-KLOOTS J, KREMER V, VOS HR, HUIBERS MMH, HAIGH JJ, HUYLEBROECK D, BOON RA, GIACCA M, VAN ROOIJ E. Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner. Nat Com. 2021;12:84. doi: 10.1038/s41467-020-20361-3. PubMed DOI PMC
HALDER SK, MATSUNAGA H, UEDA H. Experimental evidence for the involvement of F0/F1 ATPase and subsequent P2Y12 receptor activation in prothymosin alpha-induced protection of retinal ischemic damage. J Pharmacol Sci. 2020;143:127–131. doi: 10.1016/j.jphs.2020.01.008. PubMed DOI
HAN J, YE S, ZOU C, CHEN T, WANG J, LI J, JIANG L, XU J, HUANG W, WANG Y, LIANG G. Angiotensin II causes biphasic STAT3 activation through TLR4 to initiate cardiac remodeling. Hypertension. 2018;72:1301–1311. doi: 10.1161/HYPERTENSIONAHA.118.11860. PubMed DOI
HANNA A, FRANGOGIANNIS NG. The role of the TGF-β superfamily in myocardial infarction. Front Cardiovasc Med. 2019;6 doi: 10.3389/fcvm.2019.00140. PubMed DOI PMC
HEISS C, RODRIGUEZ-MATEOS A, KELM M. Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid Redox Signal. 2015;22:1230–1242. doi: 10.1089/ars.2014.6158. PubMed DOI PMC
HELDIN CH, MIYAZONO K, TEN DIJKE P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–471. doi: 10.1038/37284. PubMed DOI
HILL JM, ZALOS G, HALCOX JPJ, SCHENKE WH, WACLAWIW MA, QUYYUMI AA, FINKEL T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England J Med. 2003;34:593–600. doi: 10.1056/NEJMoa022287. PubMed DOI
HUANG A, LI H, ZENG C, CHEN W, WEI L, LIU Y, QI X. Endogenous CCN5 participates in angiotensin II/TGF-β1 networking of cardiac fibrosis in high angiotensin ii-induced hypertensive heart failure. Front Pharmacol. 2020;11:1235. doi: 10.3389/fphar.2020.01235. PubMed DOI PMC
HUANG W-P, YIN W-H, CHEN J-S, HUANG P-H, CHEN J-W, LIN S-J. Fenofibrate attenuates doxorubicin-induced cardiac dysfunction in mice via activating the eNOS/EPC pathway. Sci Rep. 2021;11:1159. doi: 10.1038/s41598-021-80984-4. PubMed DOI PMC
KOCHER AA, SCHUSTER MD, SZABOLCS MJ, TAKUMA S, BURKHOFF D, WANG J, HOMMA S, EDWARDS NM, ITESCU S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7:430–436. doi: 10.1038/86498. PubMed DOI
KOYANAGI M, URBICH C, CHAVAKIS E, HOFFMANN J, RUPP S, BADORFF C, ZEIHER AM, STARZINSKI-POWITZ A, HAENDELER J, DIMMELER S. Differentiation of circulating endothelial progenitor cells to a cardiomyogenic phenotype depends on E-cadherin. FEBS letters. 2005;579:6060–6066. doi: 10.1016/j.febslet.2005.09.071. PubMed DOI
LEASK A. Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res. 2010;106:1675–1680. doi: 10.1161/CIRCRESAHA.110.217737. PubMed DOI
LIM J-Y, PARK SJ, HWANG H-Y, PARK EJ, NAM JH, KIM J, PARK SI. TGF-beta1 induces cardiac hypertrophic responses via PKC-dependent ATF-2 activation. J Mol Cell Cardiol. 2005;39:627–636. doi: 10.1016/j.yjmcc.2005.06.016. PubMed DOI
LIU L, EISEN HJ. Epidemiology of heart failure and scope of the problem. Cardiol Clin. 2014;32:1–8. doi: 10.1016/j.ccl.2013.09.009. PubMed DOI
MALINDA KM, SIDHU GS, BANAUDHA KK, GADDIPATI JP, MAHESHWARI RK, GOLDSTEIN AL, KLEINMAN HK. Thymosin alpha 1 stimulates endothelial cell migration, angiogenesis, and wound healing. J Immunol. 1998;160:1001–1006. PubMed
McNEILL E, CHANNON KM. The role of tetrahydrobiopterin in inflammation and cardiovascular disease. Thromb Haemostasis. 2012;108:832–839. doi: 10.1160/TH12-06-0424. PubMed DOI PMC
MENG X-M, HUANG XR, XIAO J, CHEN H, ZHONG X, CHUNG ACK, LAN HY. Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro. J Pathol. 2012;227:175–188. doi: 10.1002/path.3976. PubMed DOI
MURASAWA S, KAWAMOTO A, HORII M, NAKAMORI S, ASAHARA T. Niche-dependent translineage commitment of endothelial progenitor cells, not cell fusion in general, into myocardial lineage cells. Arterioscler Thromb Vasc Biol. 2005;25:1388–1394. doi: 10.1161/01.ATV.0000168409.69960.e9. PubMed DOI
PARDALI E, SANCHEZ-DUFFHUES G, GOMEZ-PUERTO MC, TEN DIJKE P. TGF-β-induced endothelial-mesenchymal transition in fibrotic diseases. Int J Mol Sci. 18:2017. doi: 10.3390/ijms18102157. PubMed DOI PMC
PIERA-VELAZQUEZ S, LI Z, JIMENEZ SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. American J Pathol. 2011;179:1074–1080. doi: 10.1016/j.ajpath.2011.06.001. PubMed DOI PMC
PIMENTEL M, ZIMERMAN LI, ROHDE LE. Stratification of the risk of sudden death in nonischemic heart failure. Arquivos Brasileiros De Cardiologia. 2014;103:348–357. doi: 10.5935/abc.20140125. PubMed DOI PMC
ROBERTSON IB, RIFKIN DB. Regulation of the bioavailability of TGF-β and TGF-β-related proteins. Cold Spring Harb Perspect Biol. 2016;8 doi: 10.1101/cshperspect.a021907. PubMed DOI PMC
SAMMAN TAHHAN A, HAMMADAH M, SANDESARA PB, HAYEK SS, KALOGEROPOULOS AP, ALKHODER A, MOHAMED KH, TOPEL M, GHASEMZADEH N, CHIVUKULA K, KO YA, AIDA H, HESAROIEH I, MAHAR ER, KIM JH, WILSON P, SHAW L, VACCARINO V, WALLER EK, QUYYUMI AA. Progenitor cells and clinical outcomes in patients with heart failure. Circ Heart Fail. 2017;10:e004106. doi: 10.1161/CIRCHEARTFAILURE.117.004106. PubMed DOI PMC
SANDRI M, VIEHMANN M, ADAMS V, RABALD K, MANGNER N, HÖLLRIEGEL R, LURZ P, ERBS S, LINKE A, KIRSCH K, MÖBIUS-WINKLER S, THIERY J, TEUPSER D, HAMBRECHT R, SCHULER G, GIELEN S. Chronic heart failure and aging - effects of exercise training on endothelial function and mechanisms of endothelial regeneration: Results from the Leipzig Exercise Intervention in Chronic heart failure and Aging (LEICA) study. Eur J Prevent Cardiol. 2016;23:349–358. doi: 10.1177/2047487315588391. PubMed DOI
SCHILLER M, JAVELAUD D, MAUVIEL A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci. 2004;35:83–92. doi: 10.1016/j.jdermsci.2003.12.006. PubMed DOI
SHI Y, MASSAGUÉ J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700. doi: 10.1016/S0092-8674(03)00432-X. PubMed DOI
SMART N, RISEBRO CA, CLARK JE, EHLER E, MIQUEROL L, ROSSDEUTSCH A, MARBER MS, RILEY PR. Thymosin β4 facilitates epicardial neovascularization of the injured adult heart. Ann NY Acad Sci. 2010;1194:97–104. doi: 10.1111/j.1749-6632.2010.05478.x. PubMed DOI
SNIEGON I, PRIEß M, HEGER J, SCHULZ R, EULER G. Endothelial mesenchymal transition in hypoxic microvascular endothelial cells and paracrine induction of cardiomyocyte apoptosis are mediated via TGFβ1/SMAD signaling. Int J Mol Sci. 2017;18 doi: 10.3390/ijms18112290. PubMed DOI PMC
TANG S, FAN C, IROEGBU CD, ZHOU W, ZHANG Z, WU M, CHEN W, WU X, PENG J, LI Z, YANG J. TMSB4 Overexpression enhances the potency of marrow mesenchymal stromal cells for myocardial repair. Front Cell Devel Biol. 2021;9:1381. doi: 10.3389/fcell.2021.670913. PubMed DOI PMC
THEODORAKIS GN, FLEVARI P, KROUPIS C, ADAMOPOULOS S, LIVANIS EG, KOSTOPOULOU A, KOLOKATHIS F, PARASKEVAIDIS IA, LEFTHERIOTIS D, KREMASTINOS DT. Antiinflammatory effects of cardiac resynchronization therapy in patients with chronic heart failure. Pacing and clinical electrophysiology: PACE. 2006;29:255–261. doi: 10.1111/j.1540-8159.2006.00331.x. PubMed DOI
WANG W, ZHANG Y, HUI H, TONG W, WEI Z, LI Z, ZHANG S, YANG X, TIAN J, CHEN Y. The effect of endothelial progenitor cell transplantation on neointimal hyperplasia and reendothelialisation after balloon catheter injury in rat carotid arteries. Stem Cell Res Ther. 2021;12:99. doi: 10.1186/s13287-021-02135-w. PubMed DOI PMC
XU J, LAMOUILLE S, DERYNCK R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 2009;19:156–172. doi: 10.1038/cr.2009.5. PubMed DOI PMC
YANG J, FENG X, ZHOU Q, CHENG W, SHANG C, HAN P, LIN C-H, CHEN H-SV, QUERTERMOUS T, CHANG C-P. Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1-FoxM1 complex. Proc Natl Acad Sci U S A. 2016;113:E5628–E5635. doi: 10.1073/pnas.1525078113. PubMed DOI PMC
YANG M, LI X, MORRIS JC, LIANG J, DESHMUKH AJ, HODGE D, LI Y, CHA Y-M. Outcomes of cardiac resynchronization therapy in patients with hypothyroidism and heart failure. BMC Cardiovasc Disord. 2020;20:424. doi: 10.1186/s12872-020-01693-w. PubMed DOI PMC
YUCEL N, AXSOM J, YANG Y, LI L, RHOADES JH, ARANY Z. Cardiac endothelial cells maintain open chromatin and expression of cardiomyocyte myofibrillar genes. eLife. 2020;9:e55730. doi: 10.7554/eLife.55730. PubMed DOI PMC
ZEISBERG EM, TARNAVSKI O, ZEISBERG M, DORFMAN AL, MCMULLEN JR, GUSTAFSSON E, CHANDRAKER A, YUAN X, PU WT, ROBERTS AB, NEILSON EG, SAYEGH MH, IZUMO S, KALLURI R. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13:952–961. doi: 10.1038/nm1613. PubMed DOI
ZHANG B, LI D, LIU G, TAN W, ZHANG G, LIAO J. Impaired activity of circulating EPCs and endothelial function are associated with increased Syntax score in patients with coronary artery disease. Mol Med Rep. 2021a;23:1–12. doi: 10.3892/mmr.2021.11960. PubMed DOI PMC
ZHANG W, LIANG J, HAN P. Cardiac cell type-specific responses to injury and contributions to heart regeneration. Cell Regen. 2021b;10:4. https://doi:10.1186/s13619-020-00065-1 . PubMed DOI PMC