IL-2/JES6-1 mAb complexes dramatically increase sensitivity to LPS through IFN-γ production by CD25+Foxp3- T cells
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34932467
PubMed Central
PMC8691839
DOI
10.7554/elife.62432
PII: 62432
Knihovny.cz E-zdroje
- Klíčová slova
- CD25, IFN-γ, LPS, T cells, hyperreactivity, il-2/anti-il-2 mab complexes, immunology, inflammation, mouse,
- MeSH
- interferon gama nedostatek MeSH
- interleukin-2 metabolismus MeSH
- lipopolysacharidy metabolismus MeSH
- myši inbrední BALB C MeSH
- myši inbrední C57BL MeSH
- myši nahé MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- IFNG protein, mouse MeSH Prohlížeč
- interferon gama MeSH
- interleukin-2 MeSH
- lipopolysacharidy MeSH
Complexes of IL-2 and JES6-1 mAb (IL-2/JES6) provide strong sustained IL-2 signal selective for CD25+ cells and thus they potently expand Treg cells. IL-2/JES6 are effective in the treatment of autoimmune diseases and in protecting against rejection of pancreatic islet allografts. However, we found that IL-2/JES6 also dramatically increase sensitivity to LPS-mediated shock in C57BL/6 mice. We demonstrate here that this phenomenon is dependent on endogenous IFN-γ and T cells, as it is not manifested in IFN-γ deficient and nude mice, respectively. Administration of IL-2/JES6 leads to the emergence of CD25+Foxp3-CD4+ and CD25+Foxp3-CD8+ T cells producing IFN-γ in various organs, particularly in the liver. IL-2/JES6 also increase counts of CD11b+CD14+ cells in the blood and the spleen with higher sensitivity to LPS in terms of TNF-α production and induce expression of CD25 in these cells. These findings indicate safety issue for potential use of IL-2/JES6 or similar IL-2-like immunotherapeutics.
Zobrazit více v PubMed
Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, Abrams J, Sznol M, Parkinson D, Hawkins M, Paradise C, Kunkel L, Rosenberg SA. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. Journal of Clinical Oncology. 1999;17:2105–2116. doi: 10.1200/JCO.1999.17.7.2105. PubMed DOI
Berendt MJ, North RJ. T-cell-mediated suppression of anti-tumor immunity An explanation for progressive growth of an immunogenic tumor. The Journal of Experimental Medicine. 1980;151:69–80. doi: 10.1084/jem.151.1.69. PubMed DOI PMC
Berg RE, Cordes CJ, Forman J. Contribution of CD8+ T cells to innate immunity: IFN-gamma secretion induced by IL-12 and IL-18. European Journal of Immunology. 2002;32:2807–2816. doi: 10.1002/1521-4141(2002010)32:10<2807::AID-IMMU2807>3.0.CO;2-0. PubMed DOI
Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science. 2006;311:1924–1927. doi: 10.1126/science.1122927. PubMed DOI
Boyman O, Cho JH, Sprent J. The role of interleukin-2 in memory CD8 cell differentiation. Advances in Experimental Medicine and Biology. 2010;684:28–41. doi: 10.1007/978-1-4419-6451-9_3. PubMed DOI
Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nature Reviews. Immunology. 2012;12:180–190. doi: 10.1038/nri3156. PubMed DOI
Cassado ADA, D’Império Lima MR, Bortoluci KR. Revisiting mouse peritoneal macrophages: heterogeneity, development, and function. Frontiers in Immunology. 2015;6:225. doi: 10.3389/fimmu.2015.00225. PubMed DOI PMC
Cauwels A, Buys ES, Thoonen R, Geary L, Delanghe J, Shiva S, Brouckaert P. Nitrite protects against morbidity and mortality associated with TNF- or LPS-induced shock in a soluble guanylate cyclase-dependent manner. The Journal of Experimental Medicine. 2009;206:2915–2924. doi: 10.1084/jem.20091236. PubMed DOI PMC
Cousens LP, Orange JS, Biron CA. Endogenous IL-2 contributes to T cell expansion and IFN-gamma production during lymphocytic choriomeningitis virus infection. Journal of Immunology. 1995;155:5690–5699. PubMed
DeLeve LD. Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology. 2015;61:1740–1746. doi: 10.1002/hep.27376. PubMed DOI PMC
Donohue JH, Rosenberg SA. The fate of interleukin-2 after in vivo administration. Journal of Immunology. 1983;130:2203–2208. PubMed
Heremans H, Van Damme J, Dillen C, Dijkmans R, Billiau A. Interferon gamma, a mediator of lethal lipopolysaccharide-induced Shwartzman-like shock reactions in mice. The Journal of Experimental Medicine. 1990;171:1853–1869. doi: 10.1084/jem.171.6.1853. PubMed DOI PMC
Izquierdo C, Ortiz AZ, Presa M, Malo S, Montoya A, Garabatos N, Mora C, Verdaguer J, Stratmann T. Treatment of T1D via optimized expansion of antigen-specific Tregs induced by IL-2/anti-IL-2 monoclonal antibody complexes and peptide/MHC tetramers. Scientific Reports. 2018;8:8106. doi: 10.1038/s41598-018-26161-6. PubMed DOI PMC
Kieper WC, Burghardt JT, Surh CD. A role for TCR affinity in regulating naive T cell homeostasis. Journal of Immunology. 2004;172:40–44. doi: 10.4049/jimmunol.172.1.40. PubMed DOI
Klapper JA, Downey SG, Smith FO, Yang JC, Hughes MS, Kammula US, Sherry RM, Royal RE, Steinberg SM, Rosenberg S. High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma : a retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer. 2008;113:293–301. doi: 10.1002/cncr.23552. PubMed DOI PMC
Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nature Reviews. Immunology. 2015;15:283–294. doi: 10.1038/nri3823. PubMed DOI
Koenecke C, Lee C-W, Thamm K, Föhse L, Schafferus M, Mittrücker H-W, Floess S, Huehn J, Ganser A, Förster R, Prinz I. IFN-γ production by allogeneic Foxp3+ regulatory T cells is essential for preventing experimental graft-versus-host disease. Journal of Immunology. 2012;189:2890–2896. doi: 10.4049/jimmunol.1200413. PubMed DOI
Kondo M, Scherer DC, Miyamoto T, King AG, Akashi K, Sugamura K, Weissman IL. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature. 2000;407:383–386. doi: 10.1038/35030112. PubMed DOI
Li Q, Carr AL, Donald EJ, Skitzki JJ, Okuyama R, Stoolman LM, Chang AE. Synergistic effects of IL-12 and IL-18 in skewing tumor-reactive T-cell responses towards a type 1 pattern. Cancer Research. 2005;65:1063–1070. PubMed
Liao W, Lin JX, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity. 2013;38:13–25. doi: 10.1016/j.immuni.2013.01.004. PubMed DOI PMC
Liu CL, Ye P, Yen BC, Miao CH. In vivo expansion of regulatory T cells with IL-2/IL-2 mAb complexes prevents anti-factor VIII immune responses in hemophilia A mice treated with factor VIII plasmid-mediated gene therapy. Molecular Therapy. 2011;19:1511–1520. doi: 10.1038/mt.2011.61. PubMed DOI PMC
Malek TR. The biology of interleukin-2. Annual Review of Immunology. 2008;26:453–479. doi: 10.1146/annurev.immunol.26.021607.090357. PubMed DOI
Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity. 2010;33:153–165. doi: 10.1016/j.immuni.2010.08.004. PubMed DOI PMC
Minami Y, Kono T, Miyazaki T, Taniguchi T. The IL-2 receptor complex: its structure, function, and target genes. Annual Review of Immunology. 1993;11:245–268. doi: 10.1146/annurev.iy.11.040193.001333. PubMed DOI
Nakanishi K. Unique Action of Interleukin-18 on T Cells and Other Immune Cells. Frontiers in Immunology. 2018;9:763. doi: 10.3389/fimmu.2018.00763. PubMed DOI PMC
Roediger B, Kyle R, Yip KH, Sumaria N, Guy TV, Kim BS, Mitchell AJ, Tay SS, Jain R, Forbes-Blom E, Chen X, Tong PL, Bolton HA, Artis D, Paul WE, Fazekas de St Groth B, Grimbaldeston MA, Le Gros G, Weninger W. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nature Immunology. 2013;14:564–573. doi: 10.1038/ni.2584. PubMed DOI PMC
Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology. 1995;155:1151–1164. PubMed
Sharma R, Das A. IL-2 mediates NK cell proliferation but not hyperactivity. Immunologic Research. 2018;66:151–157. doi: 10.1007/s12026-017-8982-3. PubMed DOI
Spangler JB, Tomala J, Luca VC, Jude KM, Dong S, Ring AM, Votavova P, Pepper M, Kovar M, Garcia KC. Antibodies to Interleukin-2 Elicit Selective T Cell Subset Potentiation through Distinct Conformational Mechanisms. Immunity. 2015;42:815–825. doi: 10.1016/j.immuni.2015.04.015. PubMed DOI PMC
Spangler JB, Trotta E, Tomala J, Peck A, Young TA, Savvides CS, Silveria S, Votavova P, Salafsky J, Pande VS, Kovar M, Bluestone JA, Garcia KC. Engineering a Single-Agent Cytokine/Antibody Fusion That Selectively Expands Regulatory T Cells for Autoimmune Disease Therapy. Journal of Immunology. 2018;201:2094–2106. doi: 10.4049/jimmunol.1800578. PubMed DOI PMC
Sprent J, Surh CD. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nature Immunology. 2011;12:478–484. doi: 10.1038/ni.2018. PubMed DOI PMC
Tomala J, Chmelova H, Mrkvan T, Rihova B, Kovar M. In vivo expansion of activated naive CD8+ T cells and NK cells driven by complexes of IL-2 and anti-IL-2 monoclonal antibody as novel approach of cancer immunotherapy. Journal of Immunology. 2009;183:4904–4912. doi: 10.4049/jimmunol.0900284. PubMed DOI
Trotta E, Bessette PH, Silveria SL, Ely LK, Jude KM, Le DT, Holst CR, Coyle A, Potempa M, Lanier LL, Garcia KC, Crellin NK, Rondon IJ, Bluestone JA. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nature Medicine. 2018;24:1005–1014. doi: 10.1038/s41591-018-0070-2. PubMed DOI PMC
Vieira P, Rajewsky K. The half-lives of serum immunoglobulins in adult mice. European Journal of Immunology. 1988;18:313–316. doi: 10.1002/eji.1830180221. PubMed DOI
Votavova P, Tomala J, Subr V, Strohalm J, Ulbrich K, Rihova B, Kovar M. Novel IL-2-Poly(HPMA)Nanoconjugate Based Immunotherapy. Journal of Biomedical Nanotechnology. 2015;11:1662–1673. doi: 10.1166/jbn.2015.2114. PubMed DOI
Waldmann TA. The multi-subunit interleukin-2 receptor. Annual Review of Biochemistry. 1989;58:875–911. doi: 10.1146/annurev.bi.58.070189.004303. PubMed DOI
Webster KE, Walters S, Kohler RE, Mrkvan T, Boyman O, Surh CD, Grey ST, Sprent J. In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. The Journal of Experimental Medicine. 2009;206:751–760. doi: 10.1084/jem.20082824. PubMed DOI PMC
Wilson MS, Pesce JT, Ramalingam TR, Thompson RW, Cheever A, Wynn TA. Suppression of murine allergic airway disease by IL-2:anti-IL-2 monoclonal antibody-induced regulatory T cells. Journal of Immunology. 2008;181:6942–6954. doi: 10.4049/jimmunol.181.10.6942. PubMed DOI PMC
Wood KJ, Sawitzki B. Interferon gamma: a crucial role in the function of induced regulatory T cells in vivo. Trends in Immunology. 2006;27:183–187. doi: 10.1016/j.it.2006.02.008. PubMed DOI
Yu TK, Caudell EG, Smid C, Grimm EA. IL-2 activation of NK cells: involvement of MKK1/2/ERK but not p38 kinase pathway. Journal of Immunology. 2000;164:6244–6251. doi: 10.4049/jimmunol.164.12.6244. PubMed DOI
Yu A, Zhu L, Altman NH, Malek TR. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity. 2009;30:204–217. doi: 10.1016/j.immuni.2008.11.014. PubMed DOI PMC