From Personalized Medicine to Precision Psychiatry?

. 2021 ; 17 () : 3663-3668. [epub] 20211214

Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34934319

Personalised medicine aims to find an individualized approach for each particular patient. Most factors used in current psychiatry, however, depend on the assessment made by the individual clinician and lack a higher degree of reliability. Precision medicine bases decisions on quantifiable indicators available thanks to the tremendous progress in science and technology facilitating the acquisition, processing and analysis of huge amounts of data. So far, psychiatry has not been benefiting enough from the advanced diagnostic technologies; nevertheless, we are witnessing the dawn of the era of precision psychiatry, starting with the gathering of sufficient amounts of data and its analysis by the means of artificial intelligence and machine learning. First results of this approach in psychiatry are available, which facilitate diagnosis assessment, course prediction, and appropriate treatment choice. These processes are often so complex and difficult to understand that they may resemble a "black box", which can slow down the acceptance of the results of this approach in clinical practice. Still, bringing precision medicine including psychiatry to standard clinical practice is a big challenge that can result in a completely new and transformative concept of health care. Such extensive changes naturally have both their supporters and opponents. This paper aims to familiarize clinically oriented physicians with precision psychiatry and to attract their attention to its recent developments. We cover the theoretical basis of precision medicine, its specifics in psychiatry, and provide examples of its use in the field of diagnostic assessment, course prediction, and appropriate treatment planning.

Zobrazit více v PubMed

Le-niculescu H, Roseberry K, Gill SS, et al. Precision medicine for mood disorders: objective assessment, risk prediction, pharmacogenomics, and repurposed drugs. Mol Psychiatry. 2021;26(7):2776–2804. PMID: 33828235; PMCID: PMC8505261. doi:10.1038/s41380-021-01061-w PubMed DOI PMC

Quinlan EB, Banaschewski T, Barker GJ, et al; IMAGEN Consortium. Identifying biological markers for improved precision medicine in psychiatry. Mol Psychiatry. 2020;25(2):243–253. PMID: 31676814; PMCID: PMC6978138. doi:10.1038/s41380-019-0555-5 PubMed DOI PMC

Schultze-Lutter F, Schmidt SJ, Theodoridou A. Psychopathology – a precision tool in need of re-sharpening. Front Psychiatry. 2018;9:446. PMID: 30283368; PMCID: PMC6156265. doi:10.3389/fpsyt.2018.00446 PubMed DOI PMC

Fernandes BS, Williams LM, Steiner J, Leboyer M, Carvalho AF, Berk M. The new field of “precision psychiatry”. BMC Med. 2017;15(1):80. PMID: 28403846; PMCID: PMC5390384. doi:10.1186/s12916-017-0849-x PubMed DOI PMC

Gandal MJ, Leppa V, Won H, Parikshak NN, Geschwind DH. The road to precision psychiatry: translating genetics into disease mechanisms. Nat Neurosci. 2016;19(11):1397–1407. PMID: 27786179. doi:10.1038/nn.4409 PubMed DOI PMC

Yapijakis C. Hippocrates of Kos, the father of clinical medicine, and Asclepiades of Bithynia, the father of molecular medicine. Review. In Vivo (Brooklyn). 2009;23(4):507–514. PMID: 19567383. PubMed

Pulciani S, Di Lonardo A, Fagnani C, Taruscio D. P4 medicine versus Hippocrates. Ann Ist Super Sanita. 2017;53(3):185–191. PMID: 28956796. doi:10.4415/ANN_17_03_02 PubMed DOI

Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework, Clin Pharmacol Ther. 2001;69(3):89–95. PMID: 11240971. doi:10.1067/mcp.2001.113989 PubMed DOI

Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 2020;12(1):44. PMID: 32423490; PMCID: PMC7236300. doi:10.1186/s13073-020-00742-5 PubMed DOI PMC

Sullivan PF, Geschwind DH. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell. 2019;177(1):162–183. PMID: 30901538; PMCID: PMC6432948. doi:10.1016/j.cell.2019.01.015 PubMed DOI PMC

Chanfreau-Coffinier C, Hull LE, Lynch JA, et al. Projected prevalence of actionable pharmacogenetic variants and level A drugs prescribed among US veterans health administration pharmacy users. JAMA Netw Open. 2019;2(6):e195345. PMID: 31173123; PMCID: PMC6563578. doi:10.1001/jamanetworkopen.2019.5345 PubMed DOI PMC

Carr DF, Turner RM, Pirmohamed M. Pharmacogenomics of anticancer drugs: personalising the choice and dose to manage drug response. Br J Clin Pharmacol. 2021;87(2):237–255. PMID: 32501544. doi:10.1111/bcp.14407 PubMed DOI

Saadeh C, Bright D, Rustem D. Precision medicine in oncology pharmacy practice. Acta Med Acad. 2019;48(1):90–104. PMID: 31264437. doi:10.5644/ama2006-124.246 PubMed DOI

Liu L, Feigin V, Sacco RL, Koroshetz WJ. Promoting global collaboration for brain health research. BMJ. 2020;371:m3753. PMID: 33036994; PMCID: PMC7545087. doi:10.1136/bmj.m3753 PubMed DOI PMC

Insel TR, Landis SC, Collins FS. Research priorities. The NIH BRAIN Initiative. Science. 2013;340(6133):687–688. PMID: 23661744; PMCID: PMC5101945. doi:10.1126/science.1239276 PubMed DOI PMC

Perna G, Grassi M, Caldirola D, Nemeroff CB. The revolution of personalized psychiatry: will technology make it happen sooner? Psychol Med. 2018;48(5):705–713. PMID: 28967349. doi:10.1017/S0033291717002859 PubMed DOI

Lin E, Lin CH, Lane HY. Precision psychiatry applications with pharmacogenomics: artificial intelligence and machine learning approaches. Int J Mol Sci. 2020;21(3):969. PMID: 32024055; PMCID: PMC7037937. doi:10.3390/ijms21030969 PubMed DOI PMC

Papadakis GZ, Karantanas AH, Tsiknakis M, Tsatsakis A, Spandidos DA, Marias K. Deep learning opens new horizons in personalized medicine. Biomed Rep. 2019;10(4):215–217. PMID: 30988951; PMCID: PMC6439426. doi:10.3892/br.2019.1199 PubMed DOI PMC

Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage. 2017;145(Pt B):137–165. PMID: 27012503; PMCID: PMC5031516. doi:10.1016/j.neuroimage.2016.02.079 PubMed DOI PMC

Geerts H, Dacks PA, Devanarayan V, et al. Brain Health Modeling Initiative (BHMI). Big data to smart data in Alzheimer’s disease: the brain health modeling initiative to foster actionable knowledge. Alzheimers Dement. 2016;12(9):1014–1021. PMID: 27238630. doi:10.1016/j.jalz.2016.04.008 PubMed DOI

Jo T, Nho K, Saykin AJ. Deep learning in Alzheimer’s Disease: diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci. 2019;11:220. PMID: 31481890; PMCID: PMC6710444. doi:10.3389/fnagi.2019.00220 PubMed DOI PMC

Schnack HG, Nieuwenhuis M, van Haren NE, et al. Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. Neuroimage. 2014;84:299–306. PMID: 24004694. doi:10.1016/j.neuroimage.2013.08.053 PubMed DOI

Schmaal L, Marquand AF, Rhebergen D, et al. Predicting the naturalistic course of major depressive disorder using clinical and multimodal neuroimaging information: a multivariate pattern recognition study. Biol Psychiatry. 2015;78(4):278–286. PMID: 25702259; PMCID: PMC4449319. doi:10.1016/j.biopsych.2014.11.018 PubMed DOI PMC

Mongan D, Föcking M, Healy C, et al. European network of national schizophrenia networks studying gene-environment interactions (EU-GEI) high risk study group. development of proteomic prediction models for transition to psychotic disorder in the clinical high-risk state and psychotic experiences in adolescence. JAMA Psychiatry. 2021;78(1):77–90. PMID: 32857162; PMCID: PMC7450406. doi:10.1001/jamapsychiatry.2020.2459 PubMed DOI PMC

Precision Medicine. Available from: https://www.fda.gov/medical-devices/vitro-diagnostics/precision-medicine. Accessed December 2, 2021.

Evans WE, Johnson JA. Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu Rev Genomics Hum Genet. 2001;2:9–39. PMID: 11701642. doi:10.1146/annurev.genom.2.1.9 PubMed DOI

Bradley P, Shiekh M, Mehra V, et al. Improved efficacy with targeted pharmacogenetic-guided treatment of patients with depression and anxiety: a randomized clinical trial demonstrating clinical utility. J Psychiatr Res. 2018;96:100–107. PMID: 28992526. doi:10.1016/j.jpsychires.2017.09.024 PubMed DOI

Athreya AP, Neavin D, Carrillo-Roa T, et al. Pharmacogenomics-driven prediction of antidepressant treatment outcomes: a machine-learning approach with multi-trial replication. Clin Pharmacol Ther. 2019;106(4):855–865. PMID: 31012492; PMCID: PMC6739122. doi:10.1002/cpt.1482 PubMed DOI PMC

Eeltink E, van der Horst MZ, Zinkstok JR, Aalfs CM, Luykx JJ. Polygenic risk scores for genetic counseling in psychiatry: lessons learned from other fields of medicine. Neurosci Biobehav Rev. 2021;121:119–127. PMID: 33301779. doi:10.1016/j.neubiorev.2020.11.021 PubMed DOI

Wehling M. Introduction and definitions. In: Wehling M, editor. Principles of Translational Science in Medicine from Bench to Bedside. Heidelberg: Elsevier; 2015:1–12.

Dougherty D, Conway PH. The “3T’s” road map to transform US health care: the “how” of high-quality care. JAMA. 2008;299(19):2319–2321. PMID: 18492974. doi:10.1001/jama.299.19.2319 PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...