Computational Insights into the Unfolding of a Destabilized Superoxide Dismutase 1 Mutant
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
ANR-11-LABX-0011-01
Agence Nationale de la Recherche
840395
Marie Sklodowska-Curie
PubMed
34943155
PubMed Central
PMC8698278
DOI
10.3390/biology10121240
PII: biology10121240
Knihovny.cz E-resources
- Keywords
- misfolding, molecular simulations, mutation, superoxide dismutase 1, thermal stability,
- Publication type
- Journal Article MeSH
In this work, we investigate the β-barrel of superoxide dismutase 1 (SOD1) in a mutated form, the isoleucine 35 to alanine (I35A) mutant, commonly used as a model system to decipher the role of the full-length apoSOD1 protein in amyotrophic lateral sclerosis (ALS). It is known from experiments that the mutation reduces the stability of the SOD1 barrel and makes it largely unfolded in the cell at 37 degrees Celsius. We deploy state-of-the-art computational machinery to examine the thermal destabilization of the I35A mutant by comparing two widely used force fields, Amber a99SB-disp and CHARMM36m. We find that only the latter force field, when combined with the Replica Exchange with Solute Scaling (REST2) approach, reproduces semi-quantitatively the experimentally observed shift in the melting between the original and the mutated SOD1 barrel. In addition, we analyze the unfolding process and the conformational landscape of the mutant, finding these largely similar to those of the wildtype. Nevertheless, we detect an increased presence of partially misfolded states at ambient temperatures. These states, featuring conformational changes in the region of the β-strands β4-β6, might provide a pathway for nonnative aggregation.
See more in PubMed
Robertson A.D., Murphy K.P. Protein Structure and the Energetics of Protein Stability. Chem. Rev. 1997;97:1251–1268. doi: 10.1021/cr960383c. PubMed DOI
Thomas P.J., Qu B.H., Pedersen P.L. Defective protein folding as a basis of human disease. Trends Biochem. Sci. 1995;20:456–459. doi: 10.1016/S0968-0004(00)89100-8. PubMed DOI
Nguyen P.H., Ramamoorthy A., Sahoo B.R., Zheng J., Faller P., Straub J.E., Dominguez L., Shea J.E., Dokholyan N.V., de Simone A., et al. Amyloid oligomers: A joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis. Chem. Rev. 2021;121:2545–2647. doi: 10.1021/acs.chemrev.0c01122. PubMed DOI PMC
Pasinelli P., Brown R.H. Molecular biology of amyotrophic lateral sclerosis: Insights from genetics. Nat. Rev. Neurosci. 2006;7:710–723. doi: 10.1038/nrn1971. PubMed DOI
Mulligan V.K., Chakrabartty A. Protein misfolding in the late-onset neurodegenerative diseases: Common themes and the unique case of amyotrophic lateral sclerosis. Proteins. 2013;81:1285–1303. doi: 10.1002/prot.24285. PubMed DOI
Khare S.D., Caplow M., Dokholyan N.V. The rate and equilibrium constants for a multistep reaction sequence for the aggregation of superoxide dismutase in amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA. 2004;101:15094–15099. doi: 10.1073/pnas.0406650101. PubMed DOI PMC
Sekhar A., Rumfeldt J.A.O., Broom H.R., Doyle C.M., Sobering R.E., Meiering E.M., Kay L.E. Probing the free energy landscapes of ALS disease mutants of SOD1 by NMR spectroscopy. Proc. Natl. Acad. Sci. USA. 2016;113:E6939–E6945. doi: 10.1073/pnas.1611418113. PubMed DOI PMC
Zhu C., Beck M.V., Griffith J.D., Deshmukh M., Dokholyan N.V. Large SOD1 aggregates, unlike trimeric SOD1, do not impact cell viability in a model of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA. 2018;115:4661–4665. doi: 10.1073/pnas.1800187115. PubMed DOI PMC
Danielsson J., Mu X., Lang L., Wang H., Binolfi A., Theillet F.X., Bekei B., Logan D.T., Selenko P., Wennerström H., et al. Thermodynamics of protein destabilization in live cells. Proc. Natl. Acad. Sci. USA. 2015;112:12402–12407. doi: 10.1073/pnas.1511308112. PubMed DOI PMC
Gnutt D., Timr S., Ahlers J., Ko B., Manderfeld E., Heyden M., Sterpone F., Ebbinghaus S. Stability Effect of Quinary Interactions Reversed by Single Point Mutations. J. Am. Chem. Soc. 2019;141:4660–4669. doi: 10.1021/jacs.8b13025. PubMed DOI
Zeineddine R., Farrawell N.E., Lambert-Smith I.A., Yerbury J.J. Addition of exogenous SOD1 aggregates causes TDP-43 mislocalisation and aggregation. Cell Stress Chaperones. 2017;22:893–902. doi: 10.1007/s12192-017-0804-y. PubMed DOI PMC
Danielsson J., Kurnik M., Lang L., Oliveberg M. Cutting off functional loops from homodimeric enzyme superoxide dismutase 1 (SOD1) leaves monomeric beta-barrels. J. Biol. Chem. 2011;286:33070–33083. doi: 10.1074/jbc.M111.251223. PubMed DOI PMC
Danielsson J., Awad W., Saraboji K., Kurnik M., Lang L., Leinartaite L., Marklund S.L., Logan D.T., Oliveberg M. Global structural motions from the strain of a single hydrogen bond. Proc. Natl. Acad. Sci. USA. 2013;110:3829–3834. doi: 10.1073/pnas.1217306110. PubMed DOI PMC
Samanta N., Ribeiro S.S., Becker M., Laborie E., Pollak R., Timr S., Sterpone F., Ebbinghaus S. Sequestration of Proteins in Stress Granules Relies on the In-Cell but Not the In Vitro Folding Stability. J. Am. Chem. Soc. 2021 doi: 10.1021/jacs.1c09589. PubMed DOI
Danielsson J., Inomata K., Murayama S., Tochio H., Lang L., Shirakawa M., Oliveberg M. Pruning the ALS-Associated Protein SOD1 for in-Cell NMR. J. Am. Chem. Soc. 2013;135:10266–10269. doi: 10.1021/ja404425r. PubMed DOI
Iwakawa N., Morimoto D., Walinda E., Leeb S., Shirakawa M., Danielsson J., Sugase K. Transient diffusive interactions with a protein crowder affect aggregation processes of superoxide dismutase 1 β-barrel. J. Phys. Chem. 2021;125:2521–2532. doi: 10.1021/acs.jpcb.0c11162. PubMed DOI
Sörensen T., Leeb S., Danielsson J., Oliveberg M. Polyanions Cause Protein Destabilization Similar to That in Live Cells. Biochemistry. 2021;60:735–746. doi: 10.1021/acs.biochem.0c00889. PubMed DOI PMC
Khare S.D., Dokholyan N.V. Common dynamical signatures of familial amyotrophic lateral sclerosis-associated structurally diverse Cu, Zn superoxide dismutase mutants. Proc. Natl. Acad. Sci. USA. 2006;103:3147–3152. doi: 10.1073/pnas.0511266103. PubMed DOI PMC
Ding F., Tsao D., Nie H., Dokholyan N.V. Ab Initio Folding of Proteins with All-Atom Discrete Molecular Dynamics. Structure. 2008;16:1010–1018. doi: 10.1016/j.str.2008.03.013. PubMed DOI PMC
Proctor E.A., Ding F., Dokholyan N.V. Structural and Thermodynamic Effects of Post-translational Modifications in Mutant and Wild Type Cu, Zn Superoxide Dismutase. J. Mol. Biol. 2011;408:555–567. doi: 10.1016/j.jmb.2011.03.004. PubMed DOI PMC
Ding F., Furukawa Y., Nukina N., Dokholyan N.V. Local Unfolding of Cu, Zn Superoxide Dismutase Monomer Determines the Morphology of Fibrillar Aggregates. J. Mol. Biol. 2012;421:548–560. doi: 10.1016/j.jmb.2011.12.029. PubMed DOI PMC
Habibi M., Rottler J., Plotkin S.S. The unfolding mechanism of monomeric mutant SOD1 by simulated force spectroscopy. BBA- Proteins Proteom. 2017;1865:1631–1642. doi: 10.1016/j.bbapap.2017.06.009. PubMed DOI
Peng X., Cashman N.R., Plotkin S.S. Prediction of Misfolding-Specific Epitopes in SOD1 Using Collective Coordinates. J. Phys. Chem. 2018;122:11662–11676. doi: 10.1021/acs.jpcb.8b07680. PubMed DOI
Bille A., Jensen K.S., Mohanty S., Akke M., Irbäck A. Stability and Local Unfolding of SOD1 in the Presence of Protein Crowders. J. Phys. Chem. 2019;123:1920–1930. doi: 10.1021/acs.jpcb.8b10774. PubMed DOI
Mouro P.R., Povinelli A.P., Leite V.B., Chahine J. Exploring Folding Aspects of Monomeric Superoxide Dismutase. J. Phys. Chem. 2020;124:650–661. doi: 10.1021/acs.jpcb.9b09640. PubMed DOI
Timr S., Gnutt D., Ebbinghaus S., Sterpone F. The Unfolding Journey of Superoxide Dismutase 1 Barrels under Crowding: Atomistic Simulations Shed Light on Intermediate States and Their Interactions with Crowders. J. Phys. Chem. Lett. 2020;11:4206–4212. doi: 10.1021/acs.jpclett.0c00699. PubMed DOI
Wang L., Friesner R.A., Berne B.J. Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tempering ( REST2 ) J. Phys. Chem. 2011;115:9431–9438. doi: 10.1021/jp204407d. PubMed DOI PMC
Stirnemann G., Sterpone F. Recovering Protein Thermal Stability Using All-Atom Hamiltonian Replica-Exchange Simulations in Explicit Solvent. J. Chem. Theory Comput. 2015;11:5573–5577. doi: 10.1021/acs.jctc.5b00954. PubMed DOI
Robustelli P., Piana S., Shaw D.E. Developing a molecular dynamics force field for both folded and disordered protein states. Proc. Natl. Acad. Sci. USA. 2018;115:E4758–E4766. doi: 10.1073/pnas.1800690115. PubMed DOI PMC
Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B.L., Grubmüller H., MacKerell A.D. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods. 2017;14:71–73. doi: 10.1038/nmeth.4067. PubMed DOI PMC
Singh V., Biswas P. Estimating the mean first passage time of protein misfolding. Phys. Chem. Chem. Phys. 2018;20:5692–5698. doi: 10.1039/C7CP06918A. PubMed DOI
Sugita Y., Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 1999;314:141–151. doi: 10.1016/S0009-2614(99)01123-9. DOI
Stirnemann G., Sterpone F. Mechanics of Protein Adaptation to High Temperatures. J. Phys. Chem. Lett. 2017;8:5884–5890. doi: 10.1021/acs.jpclett.7b02611. PubMed DOI
Katava M., Stirnemann G., Zanatta M., Capaccioli S., Pachetti M., Ngai K.L., Sterpone F., Paciaroni A. Critical structural fluctuations of proteins upon thermal unfolding challenge the Lindemann criterion. Proc. Natl. Acad. Sci. USA. 2017;114:9361–9366. doi: 10.1073/pnas.1707357114. PubMed DOI PMC
Timr S., Sterpone F. Stabilizing or Destabilizing: Simulations of Chymotrypsin Inhibitor 2 under Crowding Reveal Existence of a Crossover Temperature. J. Phys. Chem. Lett. 2021;12:1741–1746. doi: 10.1021/acs.jpclett.0c03626. PubMed DOI
Katava M., Stirnemann G., Pachetti M., Capaccioli S., Paciaroni A., Sterpone F. Specific Interactions and Environment Flexibility Tune Protein Stability under Extreme Crowding. J. Phys. Chem. 2021;125:6103–6111. doi: 10.1021/acs.jpcb.1c01511. PubMed DOI
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Tribello G.A., Bonomi M., Branduardi D., Camilloni C., Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014;185:604–613. doi: 10.1016/j.cpc.2013.09.018. DOI
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Darden T., York D., Pedersen L. Particle Mesh Ewald-an N.Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI
Hess B., Bekker H., Berendsen H.J.C., Fraaije J. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Miyamoto S., Kollman P.A. Settle—An Analytical Version of the Shake and Rattle Algorithm for Rigid Water Models. J. Comput. Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI
Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:14101. doi: 10.1063/1.2408420. PubMed DOI
Berendsen H.J.C., Postma J.P.M., Vangunsteren W.F., Dinola A., Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI
Parrinello M., Rahman A. Polymorphic Transitions in Single-Crystals—A New Molecular-Dynamics Method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Hockney R.W., Goel S.P., Eastwood J.W. Quiet High-Resolution Computer Models of a Plasma. J. Comput. Phys. 1974;14:148–158. doi: 10.1016/0021-9991(74)90010-2. DOI
Gapsys V., De Groot B.L., Briones R. Computational analysis of local membrane properties. J. -Comput.-Aided Mol. Des. 2013;27:845–858. doi: 10.1007/s10822-013-9684-0. PubMed DOI PMC
Seeliger D., de Groot B.L. Protein thermostability calculations using alchemical free energy simulations. Biophys. J. 2010;98:2309–2316. doi: 10.1016/j.bpj.2010.01.051. PubMed DOI PMC
Piana S., Klepeis J.L., Shaw D.E. Assessing the accuracy of physical models used in protein-folding simulations: Quantitative evidence from long molecular dynamics simulations. Curr. Opin. Struct. Biol. 2014;24:98–105. doi: 10.1016/j.sbi.2013.12.006. PubMed DOI
Prevost M., Wodak S.J., Tidor B., Karplus M. Contribution of the hydrophobic effect to protein stability: Analysis based on simulations of the Ile-96 → Ala mutation in barnase. Proc. Natl. Acad. Sci. USA. 1991;88:10880–10884. doi: 10.1073/pnas.88.23.10880. PubMed DOI PMC
Hornak V., Abel R., Okur A., Strockbine B., Roitberg A., Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct. Bioinform. 2006;65:712–725. doi: 10.1002/prot.21123. PubMed DOI PMC
Best R.B., Hummer G. Optimized Molecular Dynamics Force Fields Applied to the Helix–Coil Transition of Polypeptides. J. Phys. Chem. 2009;113:9004–9015. doi: 10.1021/jp901540t. PubMed DOI PMC
Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J.L., Dror R.O., Shaw D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct. Funct. Bioinform. 2010;78:1950–1958. doi: 10.1002/prot.22711. PubMed DOI PMC
Teilum K., Smith M.H., Schulz E., Christensen L.C., Solomentsev G., Oliveberg M., Akke M. Transient structural distortion of metal-free Cu/Zn superoxide dismutase triggers aberrant oligomerization. Proc. Natl. Acad. Sci. USA. 2009;106:18273–18278. doi: 10.1073/pnas.0907387106. PubMed DOI PMC
Doyle C.M., Rumfeldt J.A., Broom H.R., Sekhar A., Kay L.E., Meiering E.M. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts. Biochemistry. 2016;55:1346–1361. doi: 10.1021/acs.biochem.5b01133. PubMed DOI
Kayatekin C., Cohen N.R., Matthews C.R. Enthalpic barriers dominate the folding and unfolding of the human Cu, Zn superoxide dismutase monomer. J. Mol. Biol. 2012;424:192–202. doi: 10.1016/j.jmb.2012.09.009. PubMed DOI PMC
Sen Mojumdar S., Scholl Z.N., Dee D.R., Rouleau L., Anand U., Garen C., Woodside M.T. Partially native intermediates mediate misfolding of SOD1 in single-molecule folding trajectories. Nat. Commun. 2017;8:1881. doi: 10.1038/s41467-017-01996-1. PubMed DOI PMC
Ruff K.M., Choi Y.H., Cox D., Ormsby A.R., Myung Y., Ascher D.B., Radford S.E., Pappu R.V., Hatters D.M. Sequence grammar underlying unfolding and phase separation of globular proteins. bioRxiv. 2021 doi: 10.2139/ssrn.3929009. PubMed DOI PMC