Natalizumab Induces Changes of Cerebrospinal Fluid Measures in Multiple Sclerosis

. 2021 Nov 29 ; 11 (12) : . [epub] 20211129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34943468
Odkazy

PubMed 34943468
PubMed Central PMC8699923
DOI 10.3390/diagnostics11122230
PII: diagnostics11122230
Knihovny.cz E-zdroje

BACKGROUND: There is a lack of knowledge about the evolution of cerebrospinal fluid (CSF) markers in multiple sclerosis (MS) patients undergoing natalizumab treatment. AIM: We aimed to evaluate the effect of natalizumab on basic inflammatory CSF and MRI measures. METHODS: Together, 411 patients were screened for eligibility and 93 subjects with ≥2 CSF examinations ≤6 months before and ≥12 months after natalizumab initiation were recruited. The effect of natalizumab on CSF as well as clinical and paraclinical measures was analyzed using adjusted mixed models. RESULTS: Natalizumab induced a decrease in CSF leukocytes (p < 1 × 10-15), CSF protein (p = 0.00007), the albumin quotient (p = 0.007), the IgG quotient (p = 6 × 10-15), the IgM quotient (p = 0.0002), the IgG index (p = 0.0004), the IgM index (p = 0.003) and the number of CSF-restricted oligoclonal bands (OCBs) (p = 0.0005). CSF-restricted OCBs positivity dropped from 94.6% to 86% but 26 patients (28%) had an increased number of OCBs at the follow-up. The baseline to follow-up EDSS and T2-LV were stable; a decrease in the relapse rate was consistent with a decrease in the CSF inflammatory markers and previous knowledge about the effectiveness of natalizumab. The average annualized brain volume loss during the follow-up was -0.50% (IQR = -0.96, -0.16) and was predicted by the baseline IgM index (B = -0.37; p = 0.003). CONCLUSIONS: Natalizumab is associated with a reduction of basic CSF inflammatory measures supporting its strong anti-inflammatory properties. The IgM index at the baseline predicted future brain volume loss during the course of natalizumab treatment.

Zobrazit více v PubMed

Rudick R.A., Stuart W.H., Calabresi P.A., Confavreux C., Galetta S.L., Radue M.S.E.R.S.E., Lublin F.D., Weinstock-Guttman B., Wynn D.R., Lynn F., et al. Natalizumab plus Interferon Beta-1a for Relapsing Multiple Sclerosis. N. Engl. J. Med. 2006;354:911–923. doi: 10.1056/NEJMoa044396. PubMed DOI

Polman C.H., O’Connor P.W., Havrdova E.K., Hutchinson M., Kappos L., Miller D.H., Phillips J.T., Lublin F.D., Giovannoni G., Wajgt A., et al. A Randomized, Placebo-Controlled Trial of Natalizumab for Relapsing Multiple Sclerosis. N. Engl. J. Med. 2006;354:899–910. doi: 10.1056/NEJMoa044397. PubMed DOI

Havrdova E., Galetta S., Hutchinson M., Stefoski D., Bates D., Polman C.H., O’Connor P.W., Giovannoni G., Phillips J.T., Lublin F.D., et al. Effect of natalizumab on clinical and radiological disease activity in multiple sclerosis: A retrospective analysis of the Natalizumab Safety and Efficacy in Relapsing-Remitting Multiple Sclerosis (AFFIRM) study. Lancet Neurol. 2009;8:254–260. doi: 10.1016/S1474-4422(09)70021-3. PubMed DOI

Horakova D., Uher T., Krasensky J., Seidl Z., Ribbens A., Van Hecke W., Billiet T., Koendgen H., Freudensprung U., Hyde R., et al. Long-term effectiveness of natalizumab on MRI outcomes and no evidence of disease activity in relapsing-remitting multiple sclerosis patients treated in a Czech Republic real-world setting: A longitudinal, retrospective study. Mult. Scler. Relat. Disord. 2020;46:102543. doi: 10.1016/j.msard.2020.102543. PubMed DOI

Hannikainen P.A., Kosa P., Barbour C., Bielekova B. Extensive Healthy Donor Age/Gender Adjustments and Propensity Score Matching Reveal Physiology of Multiple Sclerosis Through Immunophenotyping. Front. Neurol. 2020;11:565957. doi: 10.3389/fneur.2020.565957. PubMed DOI PMC

Krumbholz M., Meinl I., Kümpfel T., Hohlfeld R., Meinl E. Natalizumab disproportionately increases circulating pre-B and B cells in multiple sclerosis. Neurology. 2008;71:1350–1354. doi: 10.1212/01.wnl.0000327671.91357.96. PubMed DOI

Mattoscio M., Nicholas R., Sormani M.P., Malik O., Lee J.S., Waldman A.D., Dazzi F., Muraro P.A. Hematopoietic mobilization: Potential biomarker of response to natalizumab in multiple sclerosis. Neurology. 2015;84:1473–1482. doi: 10.1212/WNL.0000000000001454. PubMed DOI PMC

Carotenuto A., Scalia G., Ausiello F., Moccia M., Russo C.V., Saccà F., De Rosa A., Criscuolo C., Del Vecchio L., Morra V.B., et al. RCD4/CD8 ratio during natalizumab treatment in multiple sclerosis patients. J. Neuroimmunol. 2017;309:47–50. PubMed

Signoriello E., Lanzillo R., Morra V.B., Di Iorio G., Fratta M., Carotenuto A., Lus G. Lymphocytosis as a response biomarker of natalizumab therapeutic efficacy in multiple sclerosis. Mult. Scler. J. 2015;22:921–925. doi: 10.1177/1352458515604381. PubMed DOI

Comabella M., Sastre-Garriga J., Montalban X. Precision medicine in multiple sclerosis: Biomarkers for diagnosis, prognosis, and treatment response. Curr. Opin. Neurol. 2016;29:254–262. doi: 10.1097/WCO.0000000000000336. PubMed DOI

Stã¼Ve O., Marra C.M., Jerome K.R., Cook L., Cravens P.D., Cepok S., Frohman E.M., Phillips J.T., Arendt G., Hemmer B., et al. Immune surveillance in multiple sclerosis patients treated with natalizumab. Ann. Neurol. 2006;59:743–747. doi: 10.1002/ana.20858. PubMed DOI

Henriksen A.C., Ammitzbøll C., Petersen E.R., McWilliam O., Sellebjerg F., von Essen M.R., Christensen J.R. Natalizumab differentially affects plasmablasts and B cells in multiple sclerosis. Mult. Scler. Relat. Disord. 2021;52:102987. doi: 10.1016/j.msard.2021.102987. PubMed DOI

Schlüter M., Oswald E., Winklmeier S., Meinl I., Havla J., Eichhorn P., Meinl E., Kümpfel T. Effects of Natalizumab Therapy on Intrathecal Immunoglobulin G Production Indicate Targeting of Plasmablasts. Neurol. Neuroimmunol. Neuroinflamm. 2021;8:e1030. doi: 10.1212/NXI.0000000000001030. PubMed DOI PMC

Harrer A., Tumani H., Niendorf S., Lauda F., Geis C., Weishaupt A., Kleinschnitz C., Rauer S., Kuhle J., Stangel M., et al. Cerebrospinal fluid parameters of B cell-related activity in patients with active disease during natalizumab therapy. Mult. Scler. 2013;19:1209–1212. doi: 10.1177/1352458512463483. PubMed DOI

Largey F., Jelcic I., Sospedra M., Heesen C., Martin R., Jelcic I. Effects of natalizumab therapy on intrathecal antiviral antibody responses in MS. Neurol. Neuroimmunol. Neuroinflamm. 2019;6:e621. doi: 10.1212/NXI.0000000000000621. PubMed DOI PMC

Warnke C., Stettner M., Lehmensiek V., Dehmel T., Mausberg A.K., Von Geldern G., Gold R., Kümpfel T., Hohlfeld R., Mäurer M., et al. Natalizumab exerts a suppressive effect on surrogates of B cell function in blood and CSF. Mult. Scler. J. 2014;21:1036–1044. doi: 10.1177/1352458514556296. PubMed DOI

Mancuso R., Franciotta D., Rovaris M., Caputo D., Sala A., Hernis A., Agostini S., Calvo M., Clerici M. Effects of natalizumab on oligoclonal bands in the cerebrospinal fluid of multiple sclerosis patients: A longitudinal study. Mult. Scler. J. 2014;20:1900–1903. doi: 10.1177/1352458514538111. PubMed DOI

Huang J., Khademi M., Fugger L., Lindhe Ö., Novakova L., Axelsson M., Malmeström C., Constantinescu C., Lycke J., Piehl F., et al. Inflammation-related plasma and CSF biomarkers for multiple sclerosis. Proc. Natl. Acad. Sci. USA. 2020;117:12952–12960. doi: 10.1073/pnas.1912839117. PubMed DOI PMC

Meinl E., Krumbholz M., Hohlfeld R. B lineage cells in the inflammatory central nervous system environment: Migration, maintenance, local antibody production, and therapeutic modulation. Ann. Neurol. 2006;59:880–892. doi: 10.1002/ana.20890. PubMed DOI

Alter A., Duddy M., Hebert S., Biernacki K., Prat A., Antel J.P., Yong V.W., Nuttall R.K., Pennington C.J., Edwards D.R., et al. Determinants of human B cell migration across brain endothelial cells. J. Immunol. 2003;170:4497–4505. doi: 10.4049/jimmunol.170.9.4497. PubMed DOI

Silvy A., Altevogt P., Mondière P., Bella C., Defrance T. A role for the VLA-4 integrin in the activation of human memory B cells. Eur. J. Immunol. 1997;27:2757–2764. doi: 10.1002/eji.1830271103. PubMed DOI

Shapiro-Shelef M., Calame K. Regulation of plasma-cell development. Nat. Rev. Immunol. 2005;5:230–242. doi: 10.1038/nri1572. PubMed DOI

Teunissen C.E., Petzold A., Bennett J.L., Berven F.S., Brundin L., Comabella M., Franciotta D., Frederiksen J.L., Fleming J.O., Furlan R., et al. A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology. 2009;73:1914–1922. doi: 10.1212/WNL.0b013e3181c47cc2. PubMed DOI PMC

Uher T., Krasensky J., Vaneckova M., Sobisek L., Seidl Z., Havrdova E.K., Bergsland N., Dwyer M.G., Horakova D., Zivadinov R. A Novel Semiautomated Pipeline to Measure Brain Atrophy and Lesion Burden in Multiple Sclerosis: A Long-Term Comparative Study. J. Neuroimaging. 2017;27:620–629. doi: 10.1111/jon.12445. PubMed DOI

Uher T., Krasensky J., Malpas C., Bergsland N., Dwyer M.G., Havrdova E.K., Vaneckova M., Horakova D., Zivadinov R., Kalincik T. Evolution of Brain Volume Loss Rates in Early Stages of Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2021;8:e979. doi: 10.1212/NXI.0000000000000979. PubMed DOI PMC

Smith S., Zhanga Y., Jenkinson M., Chenab J., Matthews P.M., Federico A., de Stefano N. Accurate, Robust, and Automated Longitudinal and Cross-Sectional Brain Change Analysis. NeuroImage. 2002;17:479–489. doi: 10.1006/nimg.2002.1040. PubMed DOI

Gelineau-Morel R., Tomassini V., Jenkinson M., Johansen-Berg H., Matthews P.M., Palace J. The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis. Hum. Brain Mapp. 2011;33:2802–2814. doi: 10.1002/hbm.21402. PubMed DOI PMC

Bates D., Mächler M., Bolker B., Walker S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Ringle C.M., Wende S., Becker J.-M. SmartPLS 3. [(accessed on 27 November 2021)]. Available online: http://www.smartpls.com.

Matell H., Lycke J., Svenningsson A., Holmén C., Khademi M., Hillert J., Olsson T., Piehl F. Age-dependent effects on the treatment response of natalizumab in MS patients. Mult. Scler. J. 2014;21:48–56. doi: 10.1177/1352458514536085. PubMed DOI

Kalincik T., Vivek V., Jokubaitis V., Lechner-Scott J., Trojano M., Izquierdo G., Lugaresi A., Grand’Maison F., Hupperts R., Oreja-Guevara C., et al. Sex as a determinant of relapse incidence and progressive course of multiple sclerosis. Brain. 2013;136:3609–3617. doi: 10.1093/brain/awt281. PubMed DOI

Scalfari A., Lederer C., Daumer M., Nicholas R., Ebers G.C., Muraro A.P. The relationship of age with the clinical phenotype in multiple sclerosis. Mult. Scler. J. 2016;22:1750–1758. doi: 10.1177/1352458516630396. PubMed DOI

Link H., Huang Y.-M. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: An update on methodology and clinical usefulness. J. Neuroimmunol. 2006;180:17–28. doi: 10.1016/j.jneuroim.2006.07.006. PubMed DOI

Alvarez E., Nair K.V., Hoyt B.D., Seale R.A., Sillau S., Miravalle A., Engebretson E., Schurr B., Corboy J.R., Vollmer T.L., et al. Brain atrophy rates in patients with multiple sclerosis on long term natalizumab resembles healthy controls. Mult. Scler. Relat. Disord. 2021;55:103170. doi: 10.1016/j.msard.2021.103170. PubMed DOI

Mellergård J., Tisell A., Blystad I., Grönqvist A., Blennow K., Olsson B., Dahle C., Vrethem M., Lundberg P., Ernerudh J. Cerebrospinal fluid levels of neurofilament and tau correlate with brain atrophy in natalizumab-treated multiple sclerosis. Eur. J. Neurol. 2016;24:112–121. doi: 10.1111/ene.13162. PubMed DOI

Garriga J.S., Tur C., Pareto D., Vidal-Jordana A., Auger C., Rio J., Huerga E., Tintore M., Rovira A., Montalban X. Brain atrophy in natalizumab-treated patients: A 3-year follow-up. Mult. Scler. J. 2014;21:749–756. doi: 10.1177/1352458514556300. PubMed DOI

Eisele P., Szabo K., Ebert A., Platten M., Gass A. Brain Atrophy in Natalizumab-treated Patients with Multiple Sclerosis: A 5-year Retrospective Study. J. Neuroimaging. 2018;29:190–192. doi: 10.1111/jon.12586. PubMed DOI

Monreal E., de la Maza S.S., Costa-Frossard L., Walo-Delgado P., Zamora J., Fernández-Velasco J.I., Villarrubia N., Espiño M., Lourido D., Lapuente P., et al. Predicting Aggressive Multiple Sclerosis With Intrathecal IgM Synthesis Among Patients With a Clinically Isolated Syndrome. Neurol. Neuroimmunol. Neuroinflamm. 2021;8:e1047. doi: 10.1212/NXI.0000000000001047. PubMed DOI PMC

Klein A., Selter R.C., Hapfelmeier A., Berthele A., Müller-Myhsok B., Pongratz V., Gasperi C., Zimmer C., Mühlau M., Hemmer B. CSF parameters associated with early MRI activity in patients with MS. Neurol. Neuroimmunol. Neuroinflamm. 2019;6:e573. doi: 10.1212/NXI.0000000000000573. PubMed DOI PMC

Schwab N., Schneider-Hohendorf T., Melzer N., Cutter G., Wiendl H. Natalizumab-associated PML: Challenges with incidence, resulting risk, and risk stratification. Neurology. 2017;88:1197–1205. doi: 10.1212/WNL.0000000000003739. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...