• This record comes from PubMed

Antifungal and Antitoxigenic Effects of Selected Essential Oils in Vapors on Green Coffee Beans with Impact on Consumer Acceptability

. 2021 Dec 04 ; 10 (12) : . [epub] 20211204

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
027SPU-4/2019 KEGA

The main objective of this study is to evaluate the effect of selected essential oils thyme chemotype linalool (Thymus zygis L.), thyme chemotype tymol (Thymus vulgaris L.), eucalyptus (Eucalyptus globulus Labill.), lavender (Lavandula angustifolia Mill.), mint (Mentha piperita L.), almond (Prunbus dulcis Mill.), cinnamon bark (Cinnamomum zeylanicum Nees), litsea (Litsea cubeba Lour. Pers), lemongrass (Cympogon citrati L. Stapf), and ginger (Zingiber officinalis Rosc.) in the vapor phase on growth, sporulation, and mycotoxins production of two Aspergillus strains (Aspergillus parasiticus CGC34 and Aspergillus ochraceus CGC87), important postharvest pathogens of green and roasted coffee beans. Moreover, the effect of the essential oils (EOs) on the sensory profile of the coffee samples treated with EOs was evaluated. The major components of tested EOs were determined by gas chromatography and mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID). The results showed that almond, cinnamon bark, lemongrass, and litsea EOs are able to significantly inhibit the growth, sporulation, and mycotoxins production by toxigenic fungi. Sensory evaluation of coffee beans treated with EOs before and after roasting showed that some EOs (except lemongrass and litsea) do not adversely affect the taste and aroma of coffee beverages. Thus, application of the vapors of almond and cinnamon EOs appears to be an effective way that could serve to protect coffee during its transport and storage from toxigenic fungi.

See more in PubMed

Pasman W.J., Boessen R., Donner Y., Clabbers N., Boorsma A., MacPherson H., Lorenz M. Effect of Caffeine on Attention and Alertness Measured in a Home-Setting, Using Web-Based Cognition Tests. JMIR Res. Protoc. 2017;6:e169. doi: 10.2196/resprot.6727. PubMed DOI PMC

Onaolapo O., Onaolapo A. Caffeinated and Cocoa Based Beverages. Volume 8. Elsevier BV; Amsterdam, The Nethelands: 2019. Caffeinated Beverages, Behavior, and Brain Structure; pp. 163–207.

Leitão A.L. Occurrence of Ochratoxin A in Coffee: Threads and Solutions—A Mini-Review. Beverages. 2019;5:36. doi: 10.3390/beverages5020036. DOI

Batista L.R. Toxigenic fungi associated with processed (green) coffee beans (Coffea arabica L.) Int. J. Food Microbiol. 2003;85:293–300. doi: 10.1016/S0168-1605(02)00539-1. PubMed DOI

Pakshir K., Dehghani A., Nouraei H., Zareshahrabadi Z., Zomorodian K. Evaluation of fungal contamination and ochratoxin A detection in different types of coffee by HPLC-based method. J. Clin. Lab. Anal. 2021;35:e24001. doi: 10.1002/jcla.24001. PubMed DOI PMC

Awuchi C.G., Ondari E.N., Eseoghene I.J., Twinomuhwezi H., Amagwula I.O., Morya S. Fungal Reproduction and Growth [Working Title] IntechOpen; London, UK: 2021. Fungal Growth and Mycotoxins Production: Types, Toxicities, Control Strategies, and Detoxification.

Geremew T., Abate D., Landschoot S., Haesaert G., Audenaert K. Occurrence of toxigenic fungi and ochratoxin A in Ethiopian coffee for local consumption. Food Control. 2016;69:65–73. doi: 10.1016/j.foodcont.2016.04.025. DOI

Dellafiora L., Dall’Asta C., Galaverna G. Toxicodynamics of Mycotoxins in the Framework of Food Risk Assessment—An In Silico Perspective. Toxins. 2018;10:52. doi: 10.3390/toxins10020052. PubMed DOI PMC

Al-Ghouti M.A., AlHusaini A., Abu-Dieyeh M.H., Elkhabeer M.A., Alam M.M. Determination of aflatoxins in coffee by means of ultra-high performance liquid chromatography-fluorescence detector and fungi isolation. Int. J. Environ. Anal. Chem. 2020:1–16. doi: 10.1080/03067319.2020.1819993. DOI

Anttila A., Bhat R.V., Bond J.A., Borghoff S.J., Bosch F.X., Carlson G.P., Castegnaro M., Cruzan G., Gelderblom W.C.A., Hass U., et al. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. IARC Monogr. Eval. Carcinoge. Risk Hum. 2002;82:301–366. PubMed PMC

Kujawa M. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 56. Herausgegeben von der International Agency for Research on Cancer, World Health Organization. 599 Seiten, zahlr. Abb. und Tab. World Health Organization. Geneva 1993. Preis: 95—Sw.fr; 95,50 US $ Food Nahrung. 1994;38:351. doi: 10.1002/food.19940380335. DOI

EU COMMISSION REGULATION (EC) No 78/2005 of 19 January 2005 Amending Regulation (EC) No 466/2001 as Regards Heavy Metals. Off. J. Eur. Un. 1993;43 doi: 10.1016/j.foodchem.2007.01.032. DOI

Taniwaki M.H. Proceedings of the Advances in Experimental Medicine and Biology. Volume 571. Springer; Boston, MA, USA: 2006. An update on ochratoxigenic fungi and ochratoxin A in coffee; pp. 189–202. PubMed

Bucheli P., Kanchanomai C., Meyer A.I., Pittet A. Development of Ochratoxin A during Robusta (Coffea canephora) Coffee Cherry Drying. J. Agric. Food Chem. 2000;48:1358–1362. doi: 10.1021/jf9905875. PubMed DOI

Viani R. Proceedings of the Advances in Experimental Medicine and Biology. Volume 504. Springer; Boston, MA, USA: 2002. Effect of processing on ochratoxin A (OTA) content of coffee; pp. 189–193. PubMed

Bucheli P., Meyer I., Pittet A., Vuataz G., Viani R. Industrial Storage of Green Robusta Coffee under Tropical Conditions and Its Impact on Raw Material Quality and Ochratoxin A Content. J. Agric. Food Chem. 1998;46:4507–4511. doi: 10.1021/jf980468+. DOI

Magan N., Aldred D. Conditions of formation of ochratoxin A in drying, transport and in different commodities. Food Addit. Contam. 2005;22:10–16. doi: 10.1080/02652030500412154. PubMed DOI

Reddy D.N. Natural Bio-Active Compounds. Springer; Singapore: 2019. Essential Oils Extracted from Medicinal Plants and Their Applications; pp. 237–283.

Singh B.K., Tiwari S., Dubey N.K. Essential oils and their nanoformulations as green preservatives to boost food safety against mycotoxin contamination of food commodities: A review. J. Sci. Food Agric. 2021;101:4879–4890. doi: 10.1002/jsfa.11255. PubMed DOI

Tancinova D., Cisarova M., Medo J. Antifungal activity of lemon, eucalyptus, thyme, oregano, sage and lavender essential oils against Aspergillus niger and Aspergillus tubingensis isolated from grapes. Potravinarstvo. 2016;10:83–88. doi: 10.5219/554. DOI

Božik M., Císarová M., Tančinová D., Kouřimská L., Hleba L., Kloucek P. Selected essential oil vapours inhibit growth of Aspergillus spp. in oats with improved consumer acceptability. Ind. Crop. Prod. 2017;98:146–152. doi: 10.1016/j.indcrop.2016.11.044. DOI

Kloucek P., Smid J., Frankova A., Kokoska L., Valterova I., Pavela R. Fast screening method for assessment of antimicrobial activity of essential oils in vapor phase. Food Res. Int. 2012;47:161–165. doi: 10.1016/j.foodres.2011.04.044. DOI

Labuda R., Tancinová D. Fungi recovered from Slovakian poultry feed mixtures and their toxinogenity. Ann. Agric. Environ. Med. 2006;13:193–200. PubMed

Samson R.A., Houbraken J., Thrane U., Frisvad J.C., Andersen B. CBS Laboratory Manual Series. 2nd ed. Westerdijk Fungal Biodiversity Institute; Utrecht, The Netherlands: 2010. Food and Indoor Fungi.

Císarová M., Hleba L., Medo J., Tančinová D., Mašková Z., Čuboň J., Kovacik A., Foltinova D., Božik M., Klouček P. The in vitro and in situ effect of selected essential oils in vapour phase against bread spoilage toxicogenic aspergilli. Food Control. 2020;110:107007. doi: 10.1016/j.foodcont.2019.107007. DOI

ISO 8589:2007 . Sensory Analysis—General Guidance for the Design of Test Room. ISO; Geneva, Switzerland: 2007.

R Core Team . A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2016.

Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Wagner H. Vegan Community Ecology Package, Version 2.0-8. 2013. [(accessed on 25 November 2021)]. Available online: http://Vegan.r-Forge.r-Project.Org/

Císarová M., Tančinová D., Medo J., Kačániová M. Thein vitroeffect of selected essential oils on the growth and mycotoxin production ofAspergillusspecies. J. Environ. Sci. Health Part B. 2016;51:668–674. doi: 10.1080/03601234.2016.1191887. PubMed DOI

Yooussef M.M., Pham Q., Achar P.N., Sreenivasa M.Y. Antifungal activity of essential oils on Aspergillus parasiticus isolated from peanuts. J. Plant Prot. Res. 2016;56:139–142. doi: 10.1515/jppr-2016-0021. DOI

Hussein K. Antifungal activity and chemical composition of ginger essential oil against ginseng pathogenic fungi. Curr. Res. Environ. Appl. Mycol. 2018;8:194–203. doi: 10.5943/cream/8/2/4. DOI

Moghadam Z.A., Hosseini H., Hadian Z., Asgari B., Mirmoghtadaie L., Mohammadi A., Shamloo E., Javadi N.H.S. Evaluation of the Antifungal Activity of Cinnamon, Clove, Thymes, Zataria Multiflora, Cumin and Caraway Essential Oils against Ochratoxigenic Aspergillus ochraceus. J. Pharm. Res. Int. 2019;26:1–16. doi: 10.9734/jpri/2019/v26i130126. DOI

Hua H., Xing F., Selvaraj J.N., Wang Y., Zhao Y., Zhou L., Liu X., Liu Y. Inhibitory Effect of Essential Oils on Aspergillus ochraceus Growth and Ochratoxin a Production. PLoS ONE. 2014;9:e108285. doi: 10.1371/journal.pone.0108285. PubMed DOI PMC

Tyagi A.K., Malik A. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: Microscopic observations and chemical characterization of cymbopogon citratus. BMC Complement. Altern. Med. 2010;10:65. doi: 10.1186/1472-6882-10-65. PubMed DOI PMC

Mahilrajan S., Nandakumar J., Kailayalingam R., Manoharan N.A., SriVijeindran S. Screening the antifungal activity of essential oils against decay fungi from palmyrah leaf handicrafts. Biol. Res. 2014;47:1–5. doi: 10.1186/0717-6287-47-35. PubMed DOI PMC

Li Y., Kong W., Li M., Liu H., Zhao X., Yang S., Yang M. Litsea cubeba essential oil as the potential natural fumigant: Inhibition of Aspergillus flavus and AFB1 production in licorice. Ind. Crop. Prod. 2016;80:186–193. doi: 10.1016/j.indcrop.2015.11.008. DOI

Foltinova D., Tančinová D., Císarová M. Inhibitory effect of essential oils from some lauraceae species on the growth of penicilium commune. J. Microbiol. Biotechnol. Food Sci. 2019;9:385–389. doi: 10.15414/jmbfs.2019.9.special.385-389. DOI

Hlebová M., Hleba L., Medo J., Kováčik A., Čuboň J., Ivana C., Uzsáková V., Božik M., Klouček P. Antifungal and synergistic activities of some selected essential oils on the growth of significant indoor fungi of the genus Aspergillus. J. Environ. Sci. Health Part A. 2021:1–12. doi: 10.1080/10934529.2021.1994801. PubMed DOI

Geng H., Yu X., Lu A., Cao H., Zhou B., Zhou L., Zhao Z. Extraction, Chemical Composition, and Antifungal Activity of Essential Oil of Bitter Almond. Int. J. Mol. Sci. 2016;17:1421. doi: 10.3390/ijms17091421. PubMed DOI PMC

Da Silva F.C., Chalfoun S.M., De Siqueira V.M., Botelho D.M.D.S., Lima N., Batista L.R. Evaluation of antifungal activity of essential oils against potentially mycotoxigenic Aspergillus flavus and Aspergillus parasiticus. Rev. Bras. De Farm. 2012;22:1002–1010. doi: 10.1590/S0102-695X2012005000052. DOI

Bluma R., Amaiden M., Daghero J., Etcheverry M. Control ofAspergillussectionFlavigrowth and aflatoxin accumulation by plant essential oils. J. Appl. Microbiol. 2008;105:203–214. doi: 10.1111/j.1365-2672.2008.03741.x. PubMed DOI

Inouyel S., Watanabe M., Nishiyama Y., Takeo K., Akao M., Yamaguchi H. Antisporulating and Respiration-Inhibitory Effects of Essential Oils on Filamentous Fungi Hemmeffekte Atherischer Ole Auf Sporulation Und Atmung von Fadenpilzen. Mycoses. 1998;410:403–410. doi: 10.1111/j.1439-0507.1998.tb00361.x. PubMed DOI

Klinmalai P., Srisa A., Laorenza Y., Katekhong W., Harnkarnsujarit N. Antifungal and plasticization effects of carvacrol in biodegradable poly(lactic acid) and poly(butylene adipate terephthalate) blend films for bakery packaging. LWT. 2021;152:112356. doi: 10.1016/j.lwt.2021.112356. DOI

Císarová M., Tančinová D. Antimicrobial Properties of Selected Essential Oils in Vapour Phase against Aspergillus Flavus. Sci. Pap. Anim. Sci. Biotechnol. 2015;48

El-Aziz A.R.M.A., Mahmoud M.A., Al-Othman M.R., Al-Gahtani M.F. Use of Selected Essential Oils to Control Aflatoxin Contaminated Stored Cashew and Detection of Aflatoxin Biosynthesis Gene. Sci. World J. 2015;2015:1–13. doi: 10.1155/2015/958192. PubMed DOI PMC

Kalagatur N.K., Gurunathan S., Kamasani J.R., Gunti L., Kadirvelu K., Mohan C.D., Rangappa S., Prasad R., Almeida F., Mudili V., et al. Inhibitory effect of C. zeylanicum, C. longa, O. basilicum, Z. officinale, and C. martini essential oils on growth and ochratoxin A content of A. ochraceous and P. verrucosum in maize grains. Biotechnol. Rep. 2020;27:e00490. doi: 10.1016/j.btre.2020.e00490. PubMed DOI PMC

Noshirvani N., Ghanbarzadeh B., Gardrat C., Rezaei M.R., Hashemi M., Le Coz C., Coma V. Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocoll. 2017;70:36–45. doi: 10.1016/j.foodhyd.2017.03.015. DOI

García-Moraleja A., Font G., Mañes J., Ferrer E. Analysis of mycotoxins in coffee and risk assessment in Spanish adolescents and adults. Food Chem. Toxicol. 2015;86:225–233. doi: 10.1016/j.fct.2015.10.014. PubMed DOI

Cramer B., Osteresch B., Muñoz K.A., Hillmann H., Sibrowski W., Humpf H. Biomonitoring using dried blood spots: Detection of ochratoxin A and its degradation product 2’R-ochratoxin A in blood from coffee drinkers. Mol. Nutr. Food Res. 2015;59:1837–1843. doi: 10.1002/mnfr.201500220. PubMed DOI PMC

Fitzgerald D.J., Stratford M., Gasson M.J., Narbad A. Structure−Function Analysis of the Vanillin Molecule and Its Antifungal Properties. J. Agric. Food Chem. 2005;53:1769–1775. doi: 10.1021/jf048575t. PubMed DOI

Kim J.H., Chan K.L., Mahoney N., Campbell B.C. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation. Ann. Clin. Microbiol. Antimicrob. 2011;10:23. doi: 10.1186/1476-0711-10-23. PubMed DOI PMC

Calvo A.M., Wilson R.A., Bok J.W., Keller N.P. Relationship between Secondary Metabolism and Fungal Development. Microbiol. Mol. Biol. Rev. 2002;66:447–459. doi: 10.1128/MMBR.66.3.447-459.2002. PubMed DOI PMC

Wang H., Yang Z., Ying G., Yang M., Nian Y., Wei F., Kong W. Antifungal evaluation of plant essential oils and their major components against toxigenic fungi. Ind. Crop. Prod. 2018;120:180–186. doi: 10.1016/j.indcrop.2018.04.053. DOI

Matsuoka H., Ii Y., Takekawa Y., Teraoka T. Evaluation of antifungal volatile compounds on the basis of the elongation rate of a single hypha. Appl. Environ. Microbiol. 1990;56:3779–3784. doi: 10.1128/aem.56.12.3779-3784.1990. PubMed DOI PMC

Shreaz S., Bhatia R., Khan N., Muralidhar S., Manzoor N., Khan L.A. Influences of cinnamic aldehydes on H+ extrusion activity and ultrastructure of Candida. J. Med Microbiol. 2013;62:232–240. doi: 10.1099/jmm.0.036145-0. PubMed DOI

Sun Q., Li J., Sun Y., Chen Q., Zhang L., Le T. The antifungal effects of cinnamaldehyde against Aspergillus niger and its application in bread preservation. Food Chem. 2020;317:126405. doi: 10.1016/j.foodchem.2020.126405. PubMed DOI

Sun Q., Shang B., Wang L., Lu Z., Liu Y. Cinnamaldehyde inhibits fungal growth and aflatoxin B1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus. Appl. Microbiol. Biotechnol. 2016;100:1355–1364. doi: 10.1007/s00253-015-7159-z. PubMed DOI

Tao N., Fan F., Jia L., Zhang M. Octanal incorporated in postharvest wax of Satsuma mandarin fruit as a botanical fungicide against Penicillium digitatum. Food Control. 2014;45:56–61. doi: 10.1016/j.foodcont.2014.04.025. DOI

Zhou H., Tao N., Jia L. Antifungal activity of citral, octanal and α-terpineol against Geotrichum citri-aurantii. Food Control. 2014;37:277–283. doi: 10.1016/j.foodcont.2013.09.057. DOI

Zheng S., Jing G., Wang X., Ouyang Q., Jia L., Tao N. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function. Food Chem. 2015;178:76–81. doi: 10.1016/j.foodchem.2015.01.077. PubMed DOI

Khan A., Ahmad A., Akhtar F., Yousuf S., Xess I., Khan L.A., Manzoor N. Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Res. Microbiol. 2010;161:816–823. doi: 10.1016/j.resmic.2010.09.008. PubMed DOI

Falleh H., Ben Jemaa M., Saada M., Ksouri R. Essential oils: A promising eco-friendly food preservative. Food Chem. 2020;330:127268. doi: 10.1016/j.foodchem.2020.127268. PubMed DOI

Castro-Rosas J., Ferreira-Grosso C.R., Gómez-Aldapa C.A., Vargas E.R., Rodriguez M.L.R.M., Guzmán-Ortiz F.A., Falfan-Cortes R.N. Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review. Food Res. Int. 2017;102:575–587. doi: 10.1016/j.foodres.2017.09.054. PubMed DOI

Mariod A.A. Essential Oils in Food Preservation, Flavor and Safety. Elsevier BV; Amsterdam, The Nethelands: 2016. Effect of Essential Oils on Organoleptic (Smell, Taste, and Texture) Properties of Food; pp. 131–137.

Laranjo M., Fernández-León A.M., Agulheiro-Santos A.C., Potes M.E., Elias M. Essential oils of aromatic and medicinal plants play a role in food safety. J. Food Process. Preserv. 2019:e14278. doi: 10.1111/jfpp.14278. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...