A Ru/RuO2-Doped TiO2 Nanotubes as pH Sensors for Biomedical Applications: The Effect of the Amount and Oxidation of Deposited Ru on the Electrochemical Response
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-06-00424
Czech health research council
PubMed
34947506
PubMed Central
PMC8704666
DOI
10.3390/ma14247912
PII: ma14247912
Knihovny.cz E-zdroje
- Klíčová slova
- Mott–Schottky, TiO2 nanotubes, electrochemical impedance spectroscopy, pH sensor, ruthenium,
- Publikační typ
- časopisecké články MeSH
In the field of orthopedic or dental implants, titanium and its alloys are most commonly used because of their excellent mechanical and corrosion properties and good biocompatibility. After implantation into the patient's body, there is a high risk of developing bacterial inflammation, which negatively affects the surrounding tissues and the implant itself. Early detection of inflammation could be done with a pH sensor. In this work, pH-sensitive systems based on TiO2-Ru and TiO2-RuO2 combinations were fabricated and investigated. As a base material, Ti-6Al-4V alloy nanostructured by anodic oxidation was used. Ruthenium was successfully deposited on nanotubular TiO2 using cyclic polarization, galvanostatic and potentiostatic mode. Potentiostatic mode proved to be the most suitable. The selected samples were oxidized by cyclic polarization to form a TiO2-RuO2 system. The success of the oxidation was confirmed by XPS analysis. The electrochemical response of the systems to pH change was measured in saline solution using different techniques. The measurement of open circuit potential showed that unoxidized samples (TiO2-Ru) exhibited sub-Nernstian behavior (39.2 and 35.8 mV/pH). The oxidized sample (TiO2-RuO2) containing the highest amount of Ru exhibited super-Nernstian behavior (67.3 mV/pH). The Mott-Schottky analysis proved to be the best method. The use of the electrochemical impedance method can also be considered, provided that greater stability of the samples is achieved.
Zobrazit více v PubMed
Chen Q., Thouas G.A. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 2015;87:1–57. doi: 10.1016/j.mser.2014.10.001. DOI
Arciola C.R., Campoccia D., Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018;16:397–409. doi: 10.1038/s41579-018-0019-y. PubMed DOI
Souza J.C., Ponthiaux P., Henriques M., Oliveira R., Teughels W., Celis J.-P., Rocha L.A. Corrosion behaviour of titanium in the presence of Streptococcus mutans. J. Dent. 2013;41:528–534. doi: 10.1016/j.jdent.2013.03.008. PubMed DOI
Díaz I., Pacha-Olivenza M.Á., Tejero R., Anitua E., González-Martín M., Escudero M.L., Garcia-Alonso M.C. Corrosion behavior of surface modifications on titanium dental implant. In situ bacteria monitoring by electrochemical techniques. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018;106:997–1009. doi: 10.1002/jbm.b.33906. PubMed DOI
Souza J.C.M., Henriques M., Oliveira R., Teughels W., Celis J.P., Rocha L.A. Do oral biofilms influence the wear and corrosion behavior of titanium? Biofouling. 2010;26:471–478. doi: 10.1080/08927011003767985. PubMed DOI
Tang P., Zhang W., Wang Y., Zhang B., Wang H., Lin C., Zhang L. Effect of Superhydrophobic Surface of Titanium on Staphylococcus aureus Adhesion. J. Nanomater. 2011;2011:178921. doi: 10.1155/2011/178921. DOI
Arciola C.R., Campoccia D., Speziale P., Montanaro L., Costerton J.W. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. 2012;33:5967–5982. doi: 10.1016/j.biomaterials.2012.05.031. PubMed DOI
Anderson J.M. Future challenges in the in vitro and in vivo evaluation of biomaterial biocompatibility. Regen. Biomater. 2016;3:73–77. doi: 10.1093/rb/rbw001. PubMed DOI PMC
Quirynen M., De Soete M., Van Steenberghe D. Infectious risks for oral implants: A review of the literature. Clin. Oral Implant. Res. 2002;13:1–19. doi: 10.1034/j.1600-0501.2002.130101.x. PubMed DOI
Tallarico M., Canullo L., Caneva M., Özcan M. Microbial colonization at the implant-abutment interface and its possible influence on periimplantitis: A systematic review and meta-analysis. J. Prosthodont. Res. 2017;61:233–241. doi: 10.1016/j.jpor.2017.03.001. PubMed DOI
Sasarman A., Purvis P., Portelance V. Role of Menaquinone in Nitrate Respiration in Staphylococcus aureus. J. Bacteriol. 1974;117:911. doi: 10.1128/jb.117.2.911-913.1974. PubMed DOI PMC
Friedman D.B., Stauff D.L., Pishchany G., Whitwell C.W., Torres V., Skaar E.P. Staphylococcus aureus Redirects Central Metabolism to Increase Iron Availability. PLoS Pathog. 2006;2:e87. doi: 10.1371/journal.ppat.0020087. PubMed DOI PMC
Ghoneim M.T., Nguyen A., Dereje N., Huang J., Moore G.C., Murzynowski P.J., Dagdeviren C. Recent Progress in Electrochemical pH-Sensing Materials and Configurations for Biomedical Applications. Chem. Rev. 2019;119:5248–5297. doi: 10.1021/acs.chemrev.8b00655. PubMed DOI
Manjakkal L., Szwagierczak D., Dahiya R. Metal oxides based electrochemical pH sensors: Current progress and future perspectives. Prog. Mater. Sci. 2020;109:100635. doi: 10.1016/j.pmatsci.2019.100635. DOI
Zhuiykov S. Solid-state sensors monitoring parameters of water quality for the next generation of wireless sensor networks. Sens. Actuators B Chem. 2011;161:1–20. doi: 10.1016/j.snb.2011.10.078. DOI
Yusof K.A., Rahman R.A., Zulkefle M.A., Herman S.H., Abdullah W.F.H. EGFET pH Sensor Performance Dependence on Sputtered TiO2 Sensing Membrane Deposition Temperature. J. Sens. 2016;2016:7594531. doi: 10.1155/2016/7594531. DOI
Sardarinejad A., Maurya D., Alameh K. The effects of sensing electrode thickness on ruthenium oxide thin-film pH sensor. Sens. Actuators A Phys. 2014;214:15–19. doi: 10.1016/j.sna.2014.04.007. DOI
Alfonso E.P., Abad L., Casan-Pastor N., Gonzalo-Ruiz J., Baldrich E. Iridium oxide pH sensor for biomedical applications. Case urea–urease in real urine samples. Biosens. Bioelectron. 2013;39:163–169. doi: 10.1016/j.bios.2012.07.022. PubMed DOI
Mohammad-Rezaei R., Soroodian S., Esmaeili G. Manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode as a sensitive miniaturized pH sensor. J. Mater. Sci. Mater. Electron. 2018;30:1998–2005. doi: 10.1007/s10854-018-0471-5. DOI
Zhao R., Xu M., Wang J., Chen G. A pH sensor based on the TiO2 nanotube array modified Ti electrode. Electrochim. Acta. 2010;55:5647–5651. doi: 10.1016/j.electacta.2010.04.102. DOI
Monteiro G.Z., Marques P.A., Pereyra I., Albertin K.F. Study of pH sensors based on TiO2 nanotubes; Proceedings of the 2014 29th Symposium on Microelectronics Technology and Devices (SBMicro); Aracaju, Brazil. 1–5 September 2014; DOI
Manjakkal L., Cvejin K., Kulawik J., Zaraska K., Szwagierczak D., Socha R.P. Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements. Sens. Actuators B Chem. 2014;204:57–67. doi: 10.1016/j.snb.2014.07.067. DOI
Manjakkal L., Zaraska K., Cvejin K., Kulawik J., Szwagierczak D. Potentiometric RuO2–Ta2O5 pH sensors fabricated using thick film and LTCC technologies. Talanta. 2016;147:233–240. doi: 10.1016/j.talanta.2015.09.069. PubMed DOI
Manjakkal L., Djurdjic E., Cvejin K., Kulawik J., Zaraska K., Szwagierczak D. Electrochemical Impedance Spectroscopic Analysis of RuO2 Based Thick Film pH Sensors. Electrochim. Acta. 2015;168:246–255. doi: 10.1016/j.electacta.2015.04.048. DOI
Simic M., Manjakkal L., Zaraska K., Stojanovic G.M., Dahiya R. TiO2-Based Thick Film pH Sensor. IEEE Sens. J. 2016;17:248–255. doi: 10.1109/JSEN.2016.2628765. DOI
Hara N., Sugimoto K. A Nb-Doped TiO2 Semiconductor pH Sensor for Use in High-Temperature Aqueous Solutions. J. Electrochem. Soc. 1990;137:2517–2523. doi: 10.1149/1.2086979. DOI
Naumkin A.K.-V., Gaarenstroom S.W., Powell C.J. NIST Standard Reference Database 20, Version 4.1. [(accessed on 27 March 2021)];2012 Available online: https://srdata.nist.gov/xps/Default.aspx.
X-ray Photoelectron Spectroscopy (XPS) Reference Pages. [(accessed on 27 March 2021)]. Available online: http://www.xpsfitting.com/p/about.html.
Regonini D., Bowen C., Jaroenworaluck A., Stevens R. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. R Rep. 2013;74:377–406. doi: 10.1016/j.mser.2013.10.001. DOI
Matykina E., Conde A., De Damborenea J., y Marero D.M., Arenas M.A. Growth of TiO2-based nanotubes on Ti–6Al–4V alloy. Electrochim. Acta. 2011;56:9209–9218. doi: 10.1016/j.electacta.2011.07.131. DOI
Fojt J., Filip V., Joska L. On the increasing of adhesive strength of nanotube layers on beta titanium alloys for medical applications. Appl. Surf. Sci. 2015;355:52–58. doi: 10.1016/j.apsusc.2015.07.074. DOI
Moravec H., Vandrovcova M., Chotova K., Fojt J., Pruchova E., Joska L., Bacakova L. Cell interaction with modified nanotubes formed on titanium alloy Ti-6Al-4V. Mater. Sci. Eng. C. 2016;65:313–322. doi: 10.1016/j.msec.2016.04.037. PubMed DOI
Saharudin K.A., Sreekantan S., Aziz S.N.Q.A.A., Hazan R., Lai C.W., Mydin R.B.S.M.N., Mat I. Surface Modification and Bioactivity of Anodic Ti6Al4V Alloy. J. Nanosci. Nanotechnol. 2013;13:1696–1705. doi: 10.1166/jnn.2013.7115. PubMed DOI
Filova E., Fojt J., Kryslova M., Moravec H., Joska L., Bacakova L. The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of Saos-2 cells. Int. J. Nanomed. 2015;10:7145–7163. doi: 10.2147/IJN.S87474. PubMed DOI PMC
Oppedisano D.K., Jones L.A., Junk T., Bhargava S.K. Ruthenium Electrodeposition from Aqueous Solution at High Cathodic Overpotential. J. Electrochem. Soc. 2014;161:D489–D494. doi: 10.1149/2.0441410jes. DOI
Xie Y., Fu D. Supercapacitance of ruthenium oxide deposited on titania and titanium substrates. Mater. Chem. Phys. 2010;122:23–29. doi: 10.1016/j.matchemphys.2010.03.011. DOI
Jow J.-J., Lee H.-J., Chen H.-R., Wu M.-S., Wei T.-Y. Anodic, cathodic and cyclic voltammetric deposition of ruthenium oxides from aqueous RuCl3 solutions. Electrochim. Acta. 2007;52:2625–2633. doi: 10.1016/j.electacta.2006.09.018. DOI
Chen C.-C., Hsieh S.-J. Evaluation of fluorine ion concentration in TiO2 NT anodization process. J. Electrochem. Soc. 2010;157:K125. doi: 10.1149/1.3374640. DOI
Chastain J., King R.C., Jr. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation; Eden Prairie, MN, USA: 1992. p. 221.
Chen J., Qiu S., Yang L., Xu Z., Deng Y., Xu Y. Effects of oxygen, hydrogen and neutron irradiation on the mechanical properties of several vanadium alloys. J. Nucl. Mater. 2002;302:135–142. doi: 10.1016/S0022-3115(02)00775-4. DOI
Sugawara Y., Yadav A.P., Nishikata A., Tsuru T. EQCM Study on Dissolution of Ruthenium in Sulfuric Acid. J. Electrochem. Soc. 2008;155:B897–B902. doi: 10.1149/1.2945909. DOI
Rajamäki K., Nordström T., Nurmi K., Åkerman K.E., Kovanen P.T., Öörni K., Eklund K.K. Extracellular Acidosis Is a Novel Danger Signal Alerting Innate Immunity via the NLRP3 Inflammasome. J. Biol. Chem. 2013;288:13410–13419. doi: 10.1074/jbc.M112.426254. PubMed DOI PMC
Macdonald J.R., Barsoukov E. Impedance Spectroscopy: Theory, Experiment, and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2018. DOI
Orazem M.E., Tribollet B. Electrochemical Impedance Spectroscopy. John Wiley & Sons; Hoboken, NJ, USA: 2008. DOI