• This record comes from PubMed

The sources of sex differences in aging in annual fishes

. 2022 Mar ; 91 (3) : 540-550. [epub] 20220110

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Intersexual differences in life span (age at death) and aging (increase in mortality risk associated with functional deterioration) are widespread among animals, from nematodes to humans. Males often live shorter than females, but there is substantial unexplained variation among species and populations. Despite extensive research, it is poorly understood how life span differences between the sexes are modulated by an interplay among genetic, environmental and social factors. The goal of our study was to test how sex differences in life span and ageing are modulated by social and environmental factors, and by intrinsic differences between males and females. To disentangle the complex basis of sex differences in life span and aging, we combined comparative data from sex ratios in 367 natural populations of four species of African annual killifish with experimental results on sex differences in life span and aging from eight laboratory populations tested in treatments that varied social and environmental conditions. In the wild, females consistently outlived males. In captivity, sex-specific mortality depended on social conditions. In social-housed experimental groups, male-biased mortality persisted in two aggressive species, but ceased in two placid species. When social and physical contacts were prevented by housing all fish individually, male-biased mortality ceased in all four species. This outcome held across benign and challenging environmental conditions. Fitting demographic survival models revealed that increased baseline mortality was primarily responsible for a shorter male life span in social-housing conditions. The timing and rate of aging were not different between the sexes. No marker of functional aging we recorded in our study (lipofuscin accumulation, proliferative changes in kidney and liver) differed between males and females, despite their previously confirmed association with functional aging in Nothobranchius killifish. We show that sex differences in life span and aging in killifish are driven by a combination of social and environmental conditions, rather than differential functional aging. They are primarily linked to sexual selection but precipitated through multiple processes (predation, social interference). This demonstrates how sex-specific mortality varies among species even within an ecologically and evolutionary discrete lineage and explains how external factors mediate this difference.

See more in PubMed

Andersson, M. (1994). Sexual selection. Princeton University Press.

Austad, S. N. (2006). Why women live longer than men: Sex differences in longevity. Gender Medicine, 3(2), 79-92. https://doi.org/10.1016/S1550-8579(06)80198-1

Austad, S. N., & Fischer, K. E. (2016). Sex differences in lifespan. Cell Metabolism, 23(6), 1022-1033. https://doi.org/10.1016/j.cmet.2016.05.019

Bartáková, V., Reichard, M., Blažek, R., Polačik, M., & Bryja, J. (2015). Terrestrial fishes: Rivers are barriers to gene flow in annual fishes from the African savanna. Journal of Biogeography, 42(10), 1832-1844. https://doi.org/10.1111/jbi.12567

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01

Baumgart, M., Di Cicco, E., Rossi, G., Cellerino, A., & Tozzini, E. T. (2015). Comparison of captive lifespan, age-associated liver neoplasias and age-dependent gene expression between two annual fish species: Nothobranchius furzeri and Nothobranchius korthausae. Biogerontology, 16, 63-69. https://doi.org/10.1007/s10522-014-9535-y

Beirne, C., Delahay, R., & Young, A. (2015). Sex differences in senescence: The role of intra-sexual competition in early adulthood. Proceedings of the Royal Society B: Biological Sciences, 282, 20151086. https://doi.org/10.1098/rspb.2015.1086

Blažek, R., Polačik, M., Kačer, P., Cellerino, A., Řežucha, R., Methling, C., Tomášek, O., Syslová, K., Terzibasi-Tozzini, E., Albrecht, T., Vrtílek, M., & Reichard, M. (2017). Repeated intra-specific divergence in lifespan and ageing of African annual fishes along an aridity gradient. Evolution, 71(2), 386-402. https://doi.org/10.1111/evo.13127

Boonekamp, J. J., Bauch, C., & Verhulst, S. (2020). Experimentally increased brood size accelerates actuarial senescence and increases subsequent reproductive effort in a wild bird population. Journal of Animal Ecology, 89(6), 1395-1407. https://doi.org/10.1111/1365-2656.13186

Bronikowski, A. M., Altmann, J., Brockman, D. K., Cords, M., Fedigan, L. M., Pusey, A., Stoinski, T., Morris, W. F., Strier, K. B., & Alberts, S. C. (2011). Aging in the natural world: Comparative data reveal similar mortality patterns across primates. Science, 331(6022), 1325-1328. https://doi.org/10.1126/science.1201571

Cellerino, A., Valenzano, D. R., & Reichard, M. (2016). From the bush to the bench: The annual Nothobranchius fishes as a new model system in biology. Biological Reviews, 91(2), 511-533. https://doi.org/10.1111/brv.12183

Chen, H. Y., Zajitschek, F., & Maklakov, A. A. (2013). Why ageing stops: Heterogeneity explains late-life mortality deceleration in nematodes. Biology Letters, 9(5), 20130217. https://doi.org/10.1098/rsbl.2013.0217

Christensen, R. H. B. (2019). Ordinal-Regression models for ordinal data. R package version 2019.12-10. Retrieved from https://CRAN.R-project.org/package=ordinal

Clutton-Brock, T. (2021). Social evolution in mammals. Science, 373(6561), eabc9699. https://doi.org/10.1126/science.abc9699

Colchero, F., Jones, O. R., & Rebke, M. (2012). BaSTA: An R package for Bayesian estimation of age-specific survival from incomplete mark-Recapture/recovery data with covariates. Methods in Ecology and Evolution, 3(3), 466-470. https://doi.org/10.1111/j.2041-210X.2012.00186.x

Cui, R., Medeiros, T., Willemsen, D., Iasi, L. N. M., Collier, G. E., Graef, M., Reichard, M., & Valenzano, D. R. (2019). Relaxed selection limits lifespan by increasing mutation load. Cell, 178(2), 385-399. https://doi.org/10.1016/j.cell.2019.06.004

Di Cicco, E., Tozzini, E. T., Rossi, G., & Cellerino, A. (2011). The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging process reinforced by high incidence of age-dependent neoplasias. Experimental Gerontology, 46(4), 249-256. https://doi.org/10.1016/j.exger.2010.10.011

Fisher, R. A. (1930). The genetical theory of natural selection. Oxford Clarendon Press. https://doi.org/10.5962/bhl.title.27468

Foo, Y. Z., Nakagawa, S., Rhodes, G., & Simmons, L. W. (2017). The effects of sex hormones on immune function: A meta-analysis. Biological Reviews, 92(1), 551-571. https://doi.org/10.1111/brv.12243

Frank, S. A., & Hurst, L. D. (1996). Mitochondria and male disease. Nature, 383, 224. https://doi.org/10.1038/383224a0

Fromhage, L., & Jennions, M. D. (2016). Coevolution of parental investment and sexually selected traits drives sex-role divergence. Nature Communications, 7, 12517. https://doi.org/10.1038/ncomms12517

Gemmell, N. J., Metcalf, V. J., & Allendorf, F. W. (2004). Mother's curse: The effect of mtDNA on individual fitness and population viability. Trends in Ecology & Evolution, 19(5), 238-244. https://doi.org/10.1016/j.tree.2004.02.002

Genade, T. (2005). Laboratory manual for culturing N. furzeri. Retrieved from http://www.nothobranchius.info/pdfs/lab_protocols_1.pdf

Gordon, E. H., Peel, N. M., Samanta, M., Theou, O., Howlett, S. E., & Hubbard, R. E. (2017). Sex differences in frailty: A systematic review and meta-analysis. Experimental Gerontology, 89, 30-40. https://doi.org/10.1016/j.exger.2016.12.021

Gotthard, K., Nylin, S., & Wiklund, C. (2000). Mating opportunity and the evolution of sex-specific mortality rates in a butterfly. Oecologia, 122, 36-43. https://doi.org/10.1007/PL00008833

Gupta, S., Nakabo, S., Blanco, L. P., O'Neil, L. J., Wigerblad, G., Goel, R. R., Mistry, P., Jiang, K., Carmona-Rivera, C., Chan, D. W., Wang, X., Pedersen, H. L., Gadkari, M., Howe, K. N., Naz, F., Dell'Orso, S., Hasni, S. A., Dempsey, C., Buscetta, A., … Kaplan, M. J. (2020). Sex differences in neutrophil biology modulate response to type I interferons and immunometabolism. Proceedings of the National Academy of Sciences of the United States of America, 117, 16481-16491. https://doi.org/10.1073/pnas.2003603117

Haas, R. (1976). Sexual selection in Nothobranchius guentheri (Pisces: Cyprinodontidae). Evolution, 30(3), 614-622. https://doi.org/10.1111/j.1558-5646.1976.tb00938.x

Hu, C. K., & Brunet, A. (2018). The African turquoise killifish: A research organism to study vertebrate aging and diapause. Aging Cell, 17(3), e12757. https://doi.org/10.1111/acel.12757

Jung, T., Bader, N., & Grune, T. (2007). Lipofuscin: Formation, distribution, and metabolic consequences. Annals of the New York Academy of Sciences, 1119(1), 97-111. https://doi.org/10.1196/annals.1404.008

Keller, S., Weiss, J., Schleifer, S., Miller, N., & Stein, M. (1992). Suppression of immunity by stress: Effect of a graded series of stressors on lymphocyte stimulation in the rat. Science, 213, 1397-1400. https://doi.org/10.1126/science.6973822

Keppeler, F. W., Cruz, D. A., Dalponti, G., & Mormul, R. P. (2016). The role of deterministic factors and stochasticity on the trophic interactions between birds and fish in temporary floodplain ponds. Hydrobiologia, 773, 225-240. https://doi.org/10.1007/s10750-016-2705-y

Krysanov, E., & Demidova, T. (2018). Extensive karyotype variability of African fish genus Nothobranchius (Cyprinodontiformes). Comparative Cytogenetics, 12(3), 387. https://doi.org/10.3897/CompCytogen.v12i3.25092

Lemaître, J. F., Ronget, V., Tidière, M., Allainé, D., Berger, V., Cohas, A., Colchero, F., Conde, D. A., Garrat, M., Liker, A., Marais, G. A. B., Sheuerlein, A., Székely, T., & Gaillard, J. M. (2020). Sex differences in adult lifespan and aging rates of mortality across wild mammals. Proceedings of the National Academy of Sciences of the United States of America, 117, 8546-8553. https://doi.org/10.1073/pnas.1911999117

Liker, A., & Székely, T. (2005). Mortality costs of sexual selection and parental care in natural populations of birds. Evolution, 59(4), 890-897. https://doi.org/10.1111/j.0014-3820.2005.tb01762.x

Maklakov, A. A., & Lummaa, V. (2013). Evolution of sex differences in lifespan and aging: Causes and constraints. BioEssays, 35(8), 717-724. https://doi.org/10.1002/bies.20130002

Moore, S. L., & Wilson, K. (2002). Parasites as a viability cost of sexual selection in natural populations of mammals. Science, 297(5589), 2015-2018. https://doi.org/10.1126/science.1074196

Pletcher, S. D., Khazaeli, A. A., & Curtsinger, J. W. (2000). Why do life spans differ? Partitioning mean longevity differences in terms of age-specific mortality parameters. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 55(8), B381-B389. https://doi.org/10.1093/gerona/55.8.B381

Polačik, M., Blažek, R., & Reichard, M. (2016). Laboratory breeding of the short-lived annual killifish Nothobranchius furzeri. Nature Protocols, 11, 1396-1413. https://doi.org/10.1038/nprot.2016.080

Polačik, M., & Reichard, M. (2011). Asymmetric reproductive isolation between two sympatric annual killifish with extremely short lifespans. PLoS One, 6(8), e22684. https://doi.org/10.1371/journal.pone.0022684

Promislow, D. (2003). Mate choice, sexual conflict, and evolution of senescence. Behavior Genetics, 33, 191-201. https://doi.org/10.1023/A:1022562103669

Promislow, D. E., Montgomerie, R., & Martin, T. E. (1992). Mortality costs of sexual dimorphism in birds. Proceedings of the National Academy of Sciences of the United States of America, 250, 143-150. Retrieved from http://www.jstor.org/stable/49959

Regan, J. C., Khericha, M., Dobson, A. J., Bolukbasi, E., Rattanavirotkul, N., & Partridge, L. (2016). Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction. eLife, 5, e10956. https://doi.org/10.7554/eLife.10956.001

Regan, J. C., & Partridge, L. (2013). Gender and longevity: Why do men die earlier than women? Comparative and experimental evidence. Best Practice & Research: Clinical Gastroenterology, 27(4), 467-479. https://doi.org/10.1016/j.beem.2013.05.016

Reichard, M. (2015). The evolutionary ecology of African annual fishes. In N. Berois, G. García, & R. de Sá (Eds.), Annual fishes: Life history strategy, diversity, and evolution (pp. 133-158). CRC Press.

Reichard, M. (2020). Sex differences in lifespan-Nothobranchius. figshare, https://doi.org/10.6084/m9.figshare.12752648.v2

Reichard, M., Giannetti, K., Ferreira, T., Maouche, A., Vrtílek, M., Polačik, M., Blažek, R., & Ferreira, M. G. (2022). Lifespan and telomere length variation across populations of wild-derived African killifish. Molecular Ecology. https://doi.org/10.1111/mec.16287

Reichard, M., Janáč, M., Polačik, M., Blažek, R., & Vrtílek, M. (2017). Community assembly in Nothobranchius annual fishes: Nested patterns, environmental niche and biogeographic history. Ecology and Evolution, 7(7), 2294-2306. https://doi.org/10.1002/ece3.2851

Reichard, M., & Polačik, M. (2019). Nothobranchius furzeri, an ‘instant’ fish from an ephemeral habitat. eLife, 8, e41548. https://doi.org/10.7554/eLife.41548.001

Reichard, M., Polačik, M., Blažek, R., & Vrtílek, M. (2014). Female bias in the adult sex ratio of African annual fishes: Interspecific differences, seasonal trends and environmental predictors. Evolutionary Ecology, 28(6), 1105-1120. https://doi.org/10.1007/s10682-014-9732-9

Reichwald, K., Petzold, A., Koch, P., Downie, B. R., Hartmann, N., Pietsch, S., Baumgart, M., Chalopin, D., Felder, M., Bens, M., Sahm, A., Szafranski, K., Taudien, S., Groth, M., Arisi, I., Weise, A., Bhatt, S. S., Sharma, V., Kraus, J. M., … Platzer, M. (2015). Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell, 163(6), 1527-1538. https://doi.org/10.1016/j.cell.2015.10.071

Sandford, M., Castillo, G., & Hung, T. C. (2020). A review of fish identification methods applied on small fish. Reviews in Aquaculture, 12(2), 542-554. https://doi.org/10.1111/raq.12339

Sedláček, O., Baciaková, B., & Kratochvíl, L. (2014). Evolution of body colouration in killifishes (Cyprinodontiformes: Aplocheilidae, Nothobranchiidae, Rivulidae): Is male ornamentation constrained by intersexual genetic correlation? Zoologischer Anzeiger-A Journal of Comparative Zoology, 253(3), 207-215. https://doi.org/10.1016/j.jcz.2013.12.004

Sielezniew, M., Kostro-Amboziak, K., & Korosi, Á. (2020). Sexual differences in age-dependent survival and life span of adults in a natural butterfly population. Scientific Reports, 10, 10394. https://doi.org/10.1038/s41598-020-66922-w

Sowersby, W., Gonzalez-Voyer, A., & Rogell, B. (2020). Sex ratios deviate across killifish species without clear links to life history. Evolutionary Ecology, 34, 411-426. https://doi.org/10.1007/s10682-020-10041-5

Székely, T., Liker, A., Freckleton, R. P., Fichtel, C., & Kappeler, P. M. (2014). Sex-biased survival predicts adult sex ratio variation in wild birds. Proceedings of the Royal Society B: Biological Sciences, 281, 20140342. https://doi.org/10.1098/rspb.2014.0342

Terzibasi Tozzini, E., Dorn, A., Ng'oma, E., Polačik, M., Blažek, R., Reichwald, K., Petzold, A., Watters, B., Reichard, M., & Cellerino, A. (2013). Parallel evolution of senescence in annual fishes in response to extrinsic mortality. BMC Evolutionary Biology, 13, 1-12. https://doi.org/10.1186/1471-2148-13-77

Therneau, T. M. (2015). Mixed effects Cox models. R package version 2.2-5. Retrieved from https://cran.r-project.org/web/packages/coxme/coxme.pdf

Thomas, R. E., Gharrett, J. A., Carls, M. G., Rice, S. D., Moles, A., & Korn, S. (1986). Effects of fluctuating temperature on mortality, stress, and energy reserves of juvenile coho salmon. Transactions of the American Fisheries Society, 115(1), 52-59. https://doi.org/10.1577/1548-8659(1986)115<52:EOFTOM>2.0.CO;2

Tompkins, E. M., & Anderson, D. J. (2019). Sex-specific patterns of senescence in Nazca boobies linked to mating system. Journal of Animal Ecology, 88(7), 986-1000. https://doi.org/10.1111/1365-2656.12944

Trivers, R. (1972). Parental investment and sexual selection. In B. Campbell (Ed.), Sexual selection and the descent of man 1871-1971 (pp. 136-179). Aldine.

Tuttle, M. D., & Ryan, M. J. (1981). Bat predation and the evolution of frog vocalizations in the Neotropics. Science, 214, 677-678. https://doi.org/10.1126/science.214.4521.677

Vrtílek, M., Žák, J., Polačik, M., Blažek, R., & Reichard, M. (2018). Longitudinal demographic study of wild populations of African annual killifish. Scientific Reports, 8, 1-12. https://doi.org/10.1038/s41598-018-22878-6

Vrtílek, M., Žák, J., Pšenička, M., & Reichard, M. (2018). Extremely rapid maturation of a wild African annual fish. Current Biology, 28(15), R822-R824. https://doi.org/10.1016/j.cub.2018.06.031

Wildekamp, R. H. (2004). A world of killies: Atlas of the oviparous cyprinodontiform fishes of the world (Vol. 4). American Killifish Association.

Xirocostas, Z. A., Everingham, S. E., & Moles, A. T. (2020). The sex with the reduced sex chromosome dies earlier: A comparison across the tree of life. Biology Letters, 16(3), 20190867. https://doi.org/10.1098/rsbl.2019.0867

Žák, J., & Reichard, M. (2020). Fluctuating temperatures extend median lifespan, improve reproduction and reduce growth in turquoise killifish. Experimental Gerontology, 140, 111073. https://doi.org/10.1016/j.exger.2020.111073

Žák, J., Reichard, M., & Gvoždík, L. (2018). Limited differentiation of fundamental thermal niches within the killifish assemblage from shallow temporary waters. Journal of Thermal Biology, 78, 257-262. https://doi.org/10.1016/j.jtherbio.2018.10.015

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...