The sources of sex differences in aging in annual fishes
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- Nothobranchius furzeri, adult sex ratio, demographic ageing, gender, predation, senescence, social environment,
- MeSH
- Cyprinodontiformes * genetics MeSH
- Longevity MeSH
- Sex Characteristics * MeSH
- Sex Ratio MeSH
- Aging MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Intersexual differences in life span (age at death) and aging (increase in mortality risk associated with functional deterioration) are widespread among animals, from nematodes to humans. Males often live shorter than females, but there is substantial unexplained variation among species and populations. Despite extensive research, it is poorly understood how life span differences between the sexes are modulated by an interplay among genetic, environmental and social factors. The goal of our study was to test how sex differences in life span and ageing are modulated by social and environmental factors, and by intrinsic differences between males and females. To disentangle the complex basis of sex differences in life span and aging, we combined comparative data from sex ratios in 367 natural populations of four species of African annual killifish with experimental results on sex differences in life span and aging from eight laboratory populations tested in treatments that varied social and environmental conditions. In the wild, females consistently outlived males. In captivity, sex-specific mortality depended on social conditions. In social-housed experimental groups, male-biased mortality persisted in two aggressive species, but ceased in two placid species. When social and physical contacts were prevented by housing all fish individually, male-biased mortality ceased in all four species. This outcome held across benign and challenging environmental conditions. Fitting demographic survival models revealed that increased baseline mortality was primarily responsible for a shorter male life span in social-housing conditions. The timing and rate of aging were not different between the sexes. No marker of functional aging we recorded in our study (lipofuscin accumulation, proliferative changes in kidney and liver) differed between males and females, despite their previously confirmed association with functional aging in Nothobranchius killifish. We show that sex differences in life span and aging in killifish are driven by a combination of social and environmental conditions, rather than differential functional aging. They are primarily linked to sexual selection but precipitated through multiple processes (predation, social interference). This demonstrates how sex-specific mortality varies among species even within an ecologically and evolutionary discrete lineage and explains how external factors mediate this difference.
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Fritz Lipmann Institute for Age Research Leibniz Institute Jena Germany
Institute of Vertebrate Biology of the Czech Academy of Sciences Brno Czech Republic
Scuola Normale Superiore Department of Neurosciences Pisa Italy
See more in PubMed
Andersson, M. (1994). Sexual selection. Princeton University Press.
Austad, S. N. (2006). Why women live longer than men: Sex differences in longevity. Gender Medicine, 3(2), 79-92. https://doi.org/10.1016/S1550-8579(06)80198-1
Austad, S. N., & Fischer, K. E. (2016). Sex differences in lifespan. Cell Metabolism, 23(6), 1022-1033. https://doi.org/10.1016/j.cmet.2016.05.019
Bartáková, V., Reichard, M., Blažek, R., Polačik, M., & Bryja, J. (2015). Terrestrial fishes: Rivers are barriers to gene flow in annual fishes from the African savanna. Journal of Biogeography, 42(10), 1832-1844. https://doi.org/10.1111/jbi.12567
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01
Baumgart, M., Di Cicco, E., Rossi, G., Cellerino, A., & Tozzini, E. T. (2015). Comparison of captive lifespan, age-associated liver neoplasias and age-dependent gene expression between two annual fish species: Nothobranchius furzeri and Nothobranchius korthausae. Biogerontology, 16, 63-69. https://doi.org/10.1007/s10522-014-9535-y
Beirne, C., Delahay, R., & Young, A. (2015). Sex differences in senescence: The role of intra-sexual competition in early adulthood. Proceedings of the Royal Society B: Biological Sciences, 282, 20151086. https://doi.org/10.1098/rspb.2015.1086
Blažek, R., Polačik, M., Kačer, P., Cellerino, A., Řežucha, R., Methling, C., Tomášek, O., Syslová, K., Terzibasi-Tozzini, E., Albrecht, T., Vrtílek, M., & Reichard, M. (2017). Repeated intra-specific divergence in lifespan and ageing of African annual fishes along an aridity gradient. Evolution, 71(2), 386-402. https://doi.org/10.1111/evo.13127
Boonekamp, J. J., Bauch, C., & Verhulst, S. (2020). Experimentally increased brood size accelerates actuarial senescence and increases subsequent reproductive effort in a wild bird population. Journal of Animal Ecology, 89(6), 1395-1407. https://doi.org/10.1111/1365-2656.13186
Bronikowski, A. M., Altmann, J., Brockman, D. K., Cords, M., Fedigan, L. M., Pusey, A., Stoinski, T., Morris, W. F., Strier, K. B., & Alberts, S. C. (2011). Aging in the natural world: Comparative data reveal similar mortality patterns across primates. Science, 331(6022), 1325-1328. https://doi.org/10.1126/science.1201571
Cellerino, A., Valenzano, D. R., & Reichard, M. (2016). From the bush to the bench: The annual Nothobranchius fishes as a new model system in biology. Biological Reviews, 91(2), 511-533. https://doi.org/10.1111/brv.12183
Chen, H. Y., Zajitschek, F., & Maklakov, A. A. (2013). Why ageing stops: Heterogeneity explains late-life mortality deceleration in nematodes. Biology Letters, 9(5), 20130217. https://doi.org/10.1098/rsbl.2013.0217
Christensen, R. H. B. (2019). Ordinal-Regression models for ordinal data. R package version 2019.12-10. Retrieved from https://CRAN.R-project.org/package=ordinal
Clutton-Brock, T. (2021). Social evolution in mammals. Science, 373(6561), eabc9699. https://doi.org/10.1126/science.abc9699
Colchero, F., Jones, O. R., & Rebke, M. (2012). BaSTA: An R package for Bayesian estimation of age-specific survival from incomplete mark-Recapture/recovery data with covariates. Methods in Ecology and Evolution, 3(3), 466-470. https://doi.org/10.1111/j.2041-210X.2012.00186.x
Cui, R., Medeiros, T., Willemsen, D., Iasi, L. N. M., Collier, G. E., Graef, M., Reichard, M., & Valenzano, D. R. (2019). Relaxed selection limits lifespan by increasing mutation load. Cell, 178(2), 385-399. https://doi.org/10.1016/j.cell.2019.06.004
Di Cicco, E., Tozzini, E. T., Rossi, G., & Cellerino, A. (2011). The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging process reinforced by high incidence of age-dependent neoplasias. Experimental Gerontology, 46(4), 249-256. https://doi.org/10.1016/j.exger.2010.10.011
Fisher, R. A. (1930). The genetical theory of natural selection. Oxford Clarendon Press. https://doi.org/10.5962/bhl.title.27468
Foo, Y. Z., Nakagawa, S., Rhodes, G., & Simmons, L. W. (2017). The effects of sex hormones on immune function: A meta-analysis. Biological Reviews, 92(1), 551-571. https://doi.org/10.1111/brv.12243
Frank, S. A., & Hurst, L. D. (1996). Mitochondria and male disease. Nature, 383, 224. https://doi.org/10.1038/383224a0
Fromhage, L., & Jennions, M. D. (2016). Coevolution of parental investment and sexually selected traits drives sex-role divergence. Nature Communications, 7, 12517. https://doi.org/10.1038/ncomms12517
Gemmell, N. J., Metcalf, V. J., & Allendorf, F. W. (2004). Mother's curse: The effect of mtDNA on individual fitness and population viability. Trends in Ecology & Evolution, 19(5), 238-244. https://doi.org/10.1016/j.tree.2004.02.002
Genade, T. (2005). Laboratory manual for culturing N. furzeri. Retrieved from http://www.nothobranchius.info/pdfs/lab_protocols_1.pdf
Gordon, E. H., Peel, N. M., Samanta, M., Theou, O., Howlett, S. E., & Hubbard, R. E. (2017). Sex differences in frailty: A systematic review and meta-analysis. Experimental Gerontology, 89, 30-40. https://doi.org/10.1016/j.exger.2016.12.021
Gotthard, K., Nylin, S., & Wiklund, C. (2000). Mating opportunity and the evolution of sex-specific mortality rates in a butterfly. Oecologia, 122, 36-43. https://doi.org/10.1007/PL00008833
Gupta, S., Nakabo, S., Blanco, L. P., O'Neil, L. J., Wigerblad, G., Goel, R. R., Mistry, P., Jiang, K., Carmona-Rivera, C., Chan, D. W., Wang, X., Pedersen, H. L., Gadkari, M., Howe, K. N., Naz, F., Dell'Orso, S., Hasni, S. A., Dempsey, C., Buscetta, A., … Kaplan, M. J. (2020). Sex differences in neutrophil biology modulate response to type I interferons and immunometabolism. Proceedings of the National Academy of Sciences of the United States of America, 117, 16481-16491. https://doi.org/10.1073/pnas.2003603117
Haas, R. (1976). Sexual selection in Nothobranchius guentheri (Pisces: Cyprinodontidae). Evolution, 30(3), 614-622. https://doi.org/10.1111/j.1558-5646.1976.tb00938.x
Hu, C. K., & Brunet, A. (2018). The African turquoise killifish: A research organism to study vertebrate aging and diapause. Aging Cell, 17(3), e12757. https://doi.org/10.1111/acel.12757
Jung, T., Bader, N., & Grune, T. (2007). Lipofuscin: Formation, distribution, and metabolic consequences. Annals of the New York Academy of Sciences, 1119(1), 97-111. https://doi.org/10.1196/annals.1404.008
Keller, S., Weiss, J., Schleifer, S., Miller, N., & Stein, M. (1992). Suppression of immunity by stress: Effect of a graded series of stressors on lymphocyte stimulation in the rat. Science, 213, 1397-1400. https://doi.org/10.1126/science.6973822
Keppeler, F. W., Cruz, D. A., Dalponti, G., & Mormul, R. P. (2016). The role of deterministic factors and stochasticity on the trophic interactions between birds and fish in temporary floodplain ponds. Hydrobiologia, 773, 225-240. https://doi.org/10.1007/s10750-016-2705-y
Krysanov, E., & Demidova, T. (2018). Extensive karyotype variability of African fish genus Nothobranchius (Cyprinodontiformes). Comparative Cytogenetics, 12(3), 387. https://doi.org/10.3897/CompCytogen.v12i3.25092
Lemaître, J. F., Ronget, V., Tidière, M., Allainé, D., Berger, V., Cohas, A., Colchero, F., Conde, D. A., Garrat, M., Liker, A., Marais, G. A. B., Sheuerlein, A., Székely, T., & Gaillard, J. M. (2020). Sex differences in adult lifespan and aging rates of mortality across wild mammals. Proceedings of the National Academy of Sciences of the United States of America, 117, 8546-8553. https://doi.org/10.1073/pnas.1911999117
Liker, A., & Székely, T. (2005). Mortality costs of sexual selection and parental care in natural populations of birds. Evolution, 59(4), 890-897. https://doi.org/10.1111/j.0014-3820.2005.tb01762.x
Maklakov, A. A., & Lummaa, V. (2013). Evolution of sex differences in lifespan and aging: Causes and constraints. BioEssays, 35(8), 717-724. https://doi.org/10.1002/bies.20130002
Moore, S. L., & Wilson, K. (2002). Parasites as a viability cost of sexual selection in natural populations of mammals. Science, 297(5589), 2015-2018. https://doi.org/10.1126/science.1074196
Pletcher, S. D., Khazaeli, A. A., & Curtsinger, J. W. (2000). Why do life spans differ? Partitioning mean longevity differences in terms of age-specific mortality parameters. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 55(8), B381-B389. https://doi.org/10.1093/gerona/55.8.B381
Polačik, M., Blažek, R., & Reichard, M. (2016). Laboratory breeding of the short-lived annual killifish Nothobranchius furzeri. Nature Protocols, 11, 1396-1413. https://doi.org/10.1038/nprot.2016.080
Polačik, M., & Reichard, M. (2011). Asymmetric reproductive isolation between two sympatric annual killifish with extremely short lifespans. PLoS One, 6(8), e22684. https://doi.org/10.1371/journal.pone.0022684
Promislow, D. (2003). Mate choice, sexual conflict, and evolution of senescence. Behavior Genetics, 33, 191-201. https://doi.org/10.1023/A:1022562103669
Promislow, D. E., Montgomerie, R., & Martin, T. E. (1992). Mortality costs of sexual dimorphism in birds. Proceedings of the National Academy of Sciences of the United States of America, 250, 143-150. Retrieved from http://www.jstor.org/stable/49959
Regan, J. C., Khericha, M., Dobson, A. J., Bolukbasi, E., Rattanavirotkul, N., & Partridge, L. (2016). Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction. eLife, 5, e10956. https://doi.org/10.7554/eLife.10956.001
Regan, J. C., & Partridge, L. (2013). Gender and longevity: Why do men die earlier than women? Comparative and experimental evidence. Best Practice & Research: Clinical Gastroenterology, 27(4), 467-479. https://doi.org/10.1016/j.beem.2013.05.016
Reichard, M. (2015). The evolutionary ecology of African annual fishes. In N. Berois, G. García, & R. de Sá (Eds.), Annual fishes: Life history strategy, diversity, and evolution (pp. 133-158). CRC Press.
Reichard, M. (2020). Sex differences in lifespan-Nothobranchius. figshare, https://doi.org/10.6084/m9.figshare.12752648.v2
Reichard, M., Giannetti, K., Ferreira, T., Maouche, A., Vrtílek, M., Polačik, M., Blažek, R., & Ferreira, M. G. (2022). Lifespan and telomere length variation across populations of wild-derived African killifish. Molecular Ecology. https://doi.org/10.1111/mec.16287
Reichard, M., Janáč, M., Polačik, M., Blažek, R., & Vrtílek, M. (2017). Community assembly in Nothobranchius annual fishes: Nested patterns, environmental niche and biogeographic history. Ecology and Evolution, 7(7), 2294-2306. https://doi.org/10.1002/ece3.2851
Reichard, M., & Polačik, M. (2019). Nothobranchius furzeri, an ‘instant’ fish from an ephemeral habitat. eLife, 8, e41548. https://doi.org/10.7554/eLife.41548.001
Reichard, M., Polačik, M., Blažek, R., & Vrtílek, M. (2014). Female bias in the adult sex ratio of African annual fishes: Interspecific differences, seasonal trends and environmental predictors. Evolutionary Ecology, 28(6), 1105-1120. https://doi.org/10.1007/s10682-014-9732-9
Reichwald, K., Petzold, A., Koch, P., Downie, B. R., Hartmann, N., Pietsch, S., Baumgart, M., Chalopin, D., Felder, M., Bens, M., Sahm, A., Szafranski, K., Taudien, S., Groth, M., Arisi, I., Weise, A., Bhatt, S. S., Sharma, V., Kraus, J. M., … Platzer, M. (2015). Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell, 163(6), 1527-1538. https://doi.org/10.1016/j.cell.2015.10.071
Sandford, M., Castillo, G., & Hung, T. C. (2020). A review of fish identification methods applied on small fish. Reviews in Aquaculture, 12(2), 542-554. https://doi.org/10.1111/raq.12339
Sedláček, O., Baciaková, B., & Kratochvíl, L. (2014). Evolution of body colouration in killifishes (Cyprinodontiformes: Aplocheilidae, Nothobranchiidae, Rivulidae): Is male ornamentation constrained by intersexual genetic correlation? Zoologischer Anzeiger-A Journal of Comparative Zoology, 253(3), 207-215. https://doi.org/10.1016/j.jcz.2013.12.004
Sielezniew, M., Kostro-Amboziak, K., & Korosi, Á. (2020). Sexual differences in age-dependent survival and life span of adults in a natural butterfly population. Scientific Reports, 10, 10394. https://doi.org/10.1038/s41598-020-66922-w
Sowersby, W., Gonzalez-Voyer, A., & Rogell, B. (2020). Sex ratios deviate across killifish species without clear links to life history. Evolutionary Ecology, 34, 411-426. https://doi.org/10.1007/s10682-020-10041-5
Székely, T., Liker, A., Freckleton, R. P., Fichtel, C., & Kappeler, P. M. (2014). Sex-biased survival predicts adult sex ratio variation in wild birds. Proceedings of the Royal Society B: Biological Sciences, 281, 20140342. https://doi.org/10.1098/rspb.2014.0342
Terzibasi Tozzini, E., Dorn, A., Ng'oma, E., Polačik, M., Blažek, R., Reichwald, K., Petzold, A., Watters, B., Reichard, M., & Cellerino, A. (2013). Parallel evolution of senescence in annual fishes in response to extrinsic mortality. BMC Evolutionary Biology, 13, 1-12. https://doi.org/10.1186/1471-2148-13-77
Therneau, T. M. (2015). Mixed effects Cox models. R package version 2.2-5. Retrieved from https://cran.r-project.org/web/packages/coxme/coxme.pdf
Thomas, R. E., Gharrett, J. A., Carls, M. G., Rice, S. D., Moles, A., & Korn, S. (1986). Effects of fluctuating temperature on mortality, stress, and energy reserves of juvenile coho salmon. Transactions of the American Fisheries Society, 115(1), 52-59. https://doi.org/10.1577/1548-8659(1986)115<52:EOFTOM>2.0.CO;2
Tompkins, E. M., & Anderson, D. J. (2019). Sex-specific patterns of senescence in Nazca boobies linked to mating system. Journal of Animal Ecology, 88(7), 986-1000. https://doi.org/10.1111/1365-2656.12944
Trivers, R. (1972). Parental investment and sexual selection. In B. Campbell (Ed.), Sexual selection and the descent of man 1871-1971 (pp. 136-179). Aldine.
Tuttle, M. D., & Ryan, M. J. (1981). Bat predation and the evolution of frog vocalizations in the Neotropics. Science, 214, 677-678. https://doi.org/10.1126/science.214.4521.677
Vrtílek, M., Žák, J., Polačik, M., Blažek, R., & Reichard, M. (2018). Longitudinal demographic study of wild populations of African annual killifish. Scientific Reports, 8, 1-12. https://doi.org/10.1038/s41598-018-22878-6
Vrtílek, M., Žák, J., Pšenička, M., & Reichard, M. (2018). Extremely rapid maturation of a wild African annual fish. Current Biology, 28(15), R822-R824. https://doi.org/10.1016/j.cub.2018.06.031
Wildekamp, R. H. (2004). A world of killies: Atlas of the oviparous cyprinodontiform fishes of the world (Vol. 4). American Killifish Association.
Xirocostas, Z. A., Everingham, S. E., & Moles, A. T. (2020). The sex with the reduced sex chromosome dies earlier: A comparison across the tree of life. Biology Letters, 16(3), 20190867. https://doi.org/10.1098/rsbl.2019.0867
Žák, J., & Reichard, M. (2020). Fluctuating temperatures extend median lifespan, improve reproduction and reduce growth in turquoise killifish. Experimental Gerontology, 140, 111073. https://doi.org/10.1016/j.exger.2020.111073
Žák, J., Reichard, M., & Gvoždík, L. (2018). Limited differentiation of fundamental thermal niches within the killifish assemblage from shallow temporary waters. Journal of Thermal Biology, 78, 257-262. https://doi.org/10.1016/j.jtherbio.2018.10.015